FRENIC-MEGA FRENIC-ECO FRENIC-Multi FRENIC-Ace

 FRENIC-Mini ${ }_{(c 2)}$

 FRENIC-Mini ${ }_{(c 2)}$}

This document is a supplement to the "RS-485 Communication User's Manual (24A7-E-0082, MEH448)", and is comprised of section 5.2 (Data Format), to which content has been both added and changed. For pages that are not included in this document, please refer to the "RS-485 Communication User's Manual" to ensure correct use.

5.2 Data Formats

5.2.1 List of data format numbers

The following table shows the communications data format numbers for function code data. Create data according to the data format specifications described below. For the data setting range and setting unit, see the User's Manual of each inverter type (Chapter 9 for FRENIC-Mini/Mini(C2)/Eco/Multi, and Chapter 5 for FRENIC-Ace/MEGA.) The "Support" column of the table indicates whether each function is supported by the respective models or not. Y indicates the function is supported, and N indicates the function is not supported.
RTU and FGI in the Format number field mean the Modbus RTU protocol and the Fuji general-purpose inverter protocol, respectively.

Table 5.17 List of data format numbers (F codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
F00	Data Protection	[1]	Y	Y	Y	Y	Y
F01	Frequency Command 1	[1]	Y	Y	Y	Y	Y
F02	Operation Method	[1]	Y	Y	Y	Y	Y
F03	Maximum Frequency 1	[3]	Y	Y	Y	Y	Y
F04	Base Frequency 1	[3]	Y	Y	Y	Y	Y
F05	Rated Voltage at Base Frequency 1	[1]	Y	Y	Y	Y	Y
F06	Maximum Output Voltage 1	[1]	Y	N	Y	Y	Y
F07	Acceleration Time 1	[12]	Y	Y	Y	Y	Y
F08	Deceleration Time 1	[12]	Y	Y	Y	Y	Y
F09	Torque Boost 1	[3]	Y	Y	Y	Y	Y
F10	Electronic Thermal Overload Protection for Motor (Select motor characteristics) (Overload detection level) (Thermal time constant)	[1]	Y	Y	Y	Y	Y
F11		[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24]] (BUS) *1	N	Y	Y	Y	Y
F12		[3]	Y	Y	Y	Y	Y
F14	Restart Mode after Momentary Power Failure (Mode selection)	[1]	Y	Y	Y	Y	Y
F15	Frequency Limiter (High) (Low)	[3]	Y	Y	Y	Y	Y
F16		[3]	Y	Y	Y	Y	Y
F18	Bias (Frequency command 1)	[6]	Y	Y	Y	Y	Y
F20	DC Braking 1 (Braking starting frequency)	[3]	Y	Y	Y	Y	Y
F21	(Braking level)	[1]	Y	Y	Y	Y	Y
F22	(Braking time)	[5]	Y	Y	Y	Y	Y
F23	Starting Frequency 1	[3]	Y	Y	Y	Y	Y
F24		[5]	Y	N	Y	Y	Y
F25	Stop Frequency	[3]	Y	Y	Y	Y	Y
F26	Motor Sound (Carrier frequency) (Tone)	[1] *2	Y	Y	Y	Y	Y
F27		[1]	Y	Y	Y	Y	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.
*2 The frequency of 0.75 kHz will be treated as 0 .

Table 5.17 List of data format numbers (F codes) (Continued)

*2 Applicable only with FRNaロG1ם-aA, E and U
*3 Not applicable with FRNamala-aA, E and U
*4 Not applicable with FRNaロG1ם-aA, E and U

*6 As for $F R N \square \square G 1 \square-\square A, E$ and U, the terminal name changes from FMP to FM2.
*7 The value of 999 will be treated as $7 \mathrm{FFF}_{\mathrm{H}}$.
*8 Applicable only with FRNanE2a- C C, FRN $\square \square E 2 \square-\square G B$

Table 5.18 List of data format numbers (E codes)

*1 Not applicable with FRN $\square \square G 1 \square-\square \mathrm{A}, \mathrm{E}$ and U
*2 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.18 List of data format numbers (E codes) (Continued)

*2 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.
*3 The value of 999 will be treated as $7 \mathrm{FFF}_{\mathrm{H}}$.

Table 5.19 List of data format numbers (C codes)

Table 5.19 List of data format numbers (C codes) (Continued)

Table 5.19 List of data format numbers (C codes) (Continued)

Code	Name			Format number	Support					
				Mini	Eco	Multi	Ace	MEGA		
C82	Rotatory Direction and Time of Speed Up and Slowing Down (Stage 1)				[1]	N	N	N	N	Y
C83	(Stage 2) (Stage 3)			[1]	N	N	N	N	Y	
C84				[1]	N	N	N	N	Y	
C85			(Stage 4)	[1]	N	N	N	N	Y	
C86			(Stage 5)	[1]	N	N	N	N	Y	
C87	(Stage 6)			[1]	N	N	N	N	Y	
C88	(Stage 7)			[1]	N	N	N	N	Y	
C89	Frequency Compensation 1 (Numerator)			[2]	N	N	N	Y	N	
C90	Frequency Compensation 2 (Denominator)			[2]	N	N	N	Y	N	
C94	Jump	Frequency 4 Frequency 5 Frequency 6		[3]	Y	N	N	N	N	
C95				[3]	Y	N	N	N	N	
C96				[3]	Y	N	N	N	N	
C99	Multi-requency 1			[22]	Y	N	N	N	N	

Table 5.20 List of data format numbers (P codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
P01	Motor 1 (No. of poles)	[1]	N	Y	Y	Y	Y
P02	(Rated Capacity)	[11]	Y	Y	Y	Y	Y
	When P99 = 1 (MEGA only)	[25]	N	N	N	N	Y
P03	(Rated current)	[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24] (BUS) ${ }^{\text {* }}$	N	Y	Y	Y	Y
P04	(Auto-tuning)	[21]	Y	Y	Y	Y	Y
P05	(Online Tuning)	[1]	N	N	Y	Y	Y
P06	(No-load current)	[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24] (BUS) ${ }^{\text {4 }}$	N	Y	Y	Y	Y
P07	(\%R1) (\%X) (Slip compensation gain for driving) (Slip compensation response time)	[5]	Y	Y	Y	Y	Y
P08		[5]	Y	Y	Y	Y	Y
P09		[3]	Y	N	Y	Y	Y
P10		[5]	Y	N	Y	Y	Y
P11	(Slip compensation gain for braking)	[3]	Y	N	Y	Y	Y
P12	(Rated slip frequency)	[5]	Y	N	Y	Y	Y
P13	(Iron loss factor 1)	[5]	N	N	N	Y	Y
P14	(Iron loss factor 2)	[5]	N	N	N	N	Y
P15	(Iron loss factor 3) (Magnetic saturation factor 1)	[5]	N	N	N	N	Y
P16		[3]	N	N	N	Y	Y
P17	(Magnetic saturation factor 2)	[3]	N	N	N	Y	Y
P18	(Magnetic saturation factor 3)	[3]	N	N	N	Y	Y
P19	(Magnetic saturation factor 4)	[3]	N	N	N	Y	Y
P20	(Magnetic saturation factor 5)	[3]	N	N	N	Y	Y
P21	(Magnetic saturation extension factor a)	[3]	N	N	N	N	Y
P22	(Magnetic saturation extension factor b)	[3]	N	N	N	N	Y
P23	(Magnetic saturation extension factor c)	[3]	N	N	N	N	Y
P30	(PMSM drive Magnetic pole position detection mode)	[1]	N	N	N	Y	N
P53	(\%X correction factor 1)	[1]	N	N	N	Y	Y
P54	(\%X correction factor 2)	[1]	N	N	N	N	Y
P55	(Torque current under vector control)	[24] (FGI)	N	N	N	Y	Y
		[19] (RTU)	N	N	N	Y	Y
		[24] (BUS) ${ }^{\text {* }}$	N	N	N	Y	Y
P56	(Induced voltage factor under vector control)	[1]	N	N	N	Y	Y
P57	Reserved	[7]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.20 List of data format numbers (P codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
P60	Motor 1 $\begin{array}{r}\text { (PMSM Armature resistance) } \\ \text { (PMSM d-axis inductance) } \\ \text { (PMSM q-axis inductance) } \\ \text { (PMSM Induced voltage) } \\ \text { (PMSM Iron loss) } \\ \text { (PM }\end{array}$(PMSM d-axis inductance magnetic saturation correction)(PMSM Reference current at starting)(PMSM Reserved)(PMSM Reserved)	[45]	Y	N	N	Y	N
P61		[24]	Y	N	N	Y	N
P62		[24]	Y	N	N	Y	N
P63		[1]	Y	N	N	Y	N
P64		[3]	N	N	N	Y	N
P65		[3]	N	N	N	Y	N
P74		[1]	Y	N	N	Y	N
P83		[3]	N	N	N	Y	N
P84		[3]	N	N	N	Y	N
P85		[3]	N	N	N	Y	N
P86		[3]	N	N	N	Y	N
P87		[1]	N	N	N	Y	N
P88		[1]	N	N	N	Y	N
P89		[1]	Y	N	N	Y	N
P90		[24]	Y	N	N	Y	N
P91		[5]	Y	N	N	N	N
P92		[5]	Y	N	N	N	N
P93		[1]	Y	N	N	N	N
P99		[1]	Y	Y	Y	Y	Y

Table 5.21 List of data format numbers (H codes)

*1 The value of 999 will be treated as $7 \mathrm{FFF}_{\mathrm{H}}$.
*2 Applicable with the FRENIC-Eco ROM version 1399 and older.
*3 Applicable with the FRENIC-Eco ROM version 1400 and higher.

Table 5.21 List of data format numbers (H codes) (Continued)

*1 The value of 999 will be treated as $7 \mathrm{FFF}_{\mathrm{H}}$.

Table 5.21 List of data format numbers (H codes) (Continued)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
H193	User initial value	(Save) (Protection)		[1]	N	N	N	Y	N
H194			[1]	N	N	N	Y	N	
H195	DC Braking	(Braking time at the startup)	[5]	N	N	N	Y	N	
H196	Reserved		[7]	N	N	N	Y	N	
H197	User password 1	(Selection of protective operation) (Setting/check)	[1]	N	N	N	Y	N	
H198			[1]	N	N	N	Y	N	
H199	User password protection valid		[1]	N	N	N	Y	N	

Table 5.22 List of data format numbers (A codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
A01	Maximum Frequency 2	[3]	Y	N	Y	Y	Y
A02	Base Frequency 2	[3]	Y	N	Y	Y	Y
A03	Rated Voltage at Base Frequency 2	[1]	Y	N	Y	Y	Y
A04	Maximum Output Voltage 2	[1]	Y	N	Y	Y	Y
A05	Torque Boost 2	[3]	Y	N	Y	Y	Y
A06	Electronic Thermal Overload Protection for Motor 2 (Select motor characteristics) (Overload detection level)	[1]	Y	N	Y	Y	Y
A07		[24](FGI)	Y	N	Y	Y	Y
		[19](RTU)	Y	N	Y	Y	Y
		[24](BUS) ${ }^{\text {*1 }}$	N	N	Y	Y	Y
A08	(Thermal time constant)	[3]	Y	N	Y	Y	Y
A09	$\begin{array}{lr}\text { DC Braking 2 } & \text { (Braking starting frequency) } \\ \text { (Braking level) } \\ \text { (Braking time) }\end{array}$	[3]	Y	N	Y	Y	Y
A10		[1]	Y	N	Y	Y	Y
A11		[5]	Y	N	Y	Y	Y
A12	Starting Frequency 2	[3]	Y	N	Y	Y	Y
A13	Load Selection/Auto Torque Boost/Auto Energy Saving Operation 2	[1]	Y	N	Y	Y	Y
A14	Drive Control Selection 2	[1]	Y	N	Y	Y	Y
A15	Motor 2 $\begin{array}{r}\text { (No. of poles) } \\ \text { (Rated Capacity) } \\ \text { When A39 = 1(MEGA only) } \\ \text { (Rated current) }\end{array}$	[1]	N	N	Y	Y	Y
A16		[11]	Y	N	Y	Y	Y
		[25]	N	N	N	N	Y
A17		[24](FGI)	Y	N	Y	Y	Y
		[19](RTU)	Y	N	Y	Y	Y
		[24](BUS) ${ }^{\text {+1 }}$	N	N	Y	Y	Y
A18	(Auto-tuning) (Online Tuning) (No-load current)	[21]	Y	N	Y	Y	Y
A19		[1]	N	N	Y	Y	Y
A20		[24](FGI)	Y	N	Y	Y	Y
		[19](RTU)	Y	N	Y	Y	Y
		[24](BUS) ${ }^{\text {-1 }}$	N	N	Y	Y	Y
A21	(\%R1)(\%X)	[5]	Y	N	Y	Y	Y
A22		[5]	Y	N	Y	Y	Y
A23	(Slip compensation gain for driving) (Slip compensation response time)	[3]	Y	N	Y	Y	Y
A24		[5]	Y	N	Y	Y	Y
A25	(Slip compensation gain for braking)	[3]	Y	N	Y	Y	Y
A26	(Rated slip frequency)	[5]	Y	N	Y	Y	Y
A27	(Iron loss factor 1)	[5]	N	N	N	Y	Y
A28	(Iron loss factor 2)	[5]	N	N	N	N	Y
A29	(Iron loss factor 3) (Magnetic saturation factor 1)	[5]	N	N	N	N	Y
A30		[3]	N	N	N	Y	Y
A31	(Magnetic saturation factor 2)	[3]	N	N	N	Y	Y
A32	(Magnetic saturation factor 3)	[3]	N	N	N	Y	Y
A33	(Magnetic saturation factor 4)	[3]	N	N	N	Y	Y
A34	(Magnetic saturation factor 5)	[3]	N	N	N	Y	Y
A35	(Magnetic saturation extension factor a)	[3]	N	N	N	N	Y
A36	(Magnetic saturation extension factor b)	[3]	N	N	N	N	Y
A37	(Magnetic saturation extension factor c)	[3]	N	N	N	N	Y
A39	Motor 2 Selection	[1]	Y	N	Y	Y	Y
A40	Slip Compensation 2 (Operating conditions)	[1]	N	N	Y	Y	Y
A41	Output Current Fluctuation Damping Gain for Motor 2	[5]	Y	N	Y	Y	Y
A42	Motor/Parameter Switching 2 (Mode selection)	[1]	N	N	N	N	Y

[^0]Table 5.22 List of data format numbers (A codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
A43	$\begin{array}{lr}\text { Speed Control } 2 & \begin{array}{l}\text { (Speed command filter) } \\ \text { (Speed detection filter) }\end{array}\end{array}$	[7]	N	N	N	Y	Y
A44		[7]	N	N	N	Y	Y
A45	Cumulative Motor Run Time 2	[1]	N	N	Y	N	N
	Speed Control $2 \times \mathrm{P}$ (Gain)	[3]	N	N	N	Y	Y
A46	Startup Times of Motor 2	[1]	N	N	Y	N	N
	Speed Control 2 I (Integral time)	[7]	N	N	N	Y	Y
A47	(Feed forward gain) (Output filter) (Notch filter resonance frequency) (Notch filter attenuation level)	[5]	N	N	N	Y	Y
A48		[7]	N	N	N	N	Y
A49		[1]	N	N	N	Y	Y
A50		[1]	N	N	N	Y	Y
A51	Cumulative Motor Run Time 2	[74]	Y	N	N	Y	Y
A52	Startup Counter for Motor 2	[1]	Y	N	N	Y	Y
A53	Motor 2 $(\% \mathrm{X}$ correction factor 1) $(\% \mathrm{X}$ correction factor 2) 	[1]	N	N	N	Y	Y
A54		[1]	N	N	N	N	Y
A55		[24](FGI)	N	N	N	Y	Y
		[19](RTU)	N	N	N	Y	Y
		[24](BUS) ${ }^{\text {* }}$	N	N	N	Y	Y
A56		[1]	N	N	N	Y	Y
A57	Reserved	[7]	N	N	N	N	Y
A98	Motor 2 (Select function)	[1]	N	N	N	Y	N

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.23 List of data format numbers (b codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
b01	Maximum Frequency 3	[3]	N	N	N	N	Y
b02	Base Frequency 3	[3]	N	N	N	N	Y
b03	Rated Voltage at Base Frequency 3	[1]	N	N	N	N	Y
b04	Maximum Output Voltage 3	[1]	N	N	N	N	Y
b05	Torque Boost 3	[3]	N	N	N	N	Y
b06	Electronic Thermal Overload Protection for Motor 3 (Select motor characteristics)	[1]	N	N	N	N	Y
b07	(Overload detection level)	[24](FGI)	N	N	N	N	Y
		[19](RTU)	N	N	N	N	Y
		[24](BUS) ${ }^{\text {*1 }}$	N	N	N	N	Y
b08	(Thermal time constant)	[3]	N	N	N	N	Y
b09	DC Braking 3 $\begin{array}{r}\text { (Braking starting frequency) } \\ \text { (Braking level) } \\ \text { (Braking time) }\end{array}$	[3]	N	N	N	N	Y
b10		[1]	N	N	N	N	Y
b11		[5]	N	N	N	N	Y
b12	Starting Frequency 3	[3]	N	N	N	N	Y
b13	Load Selection/Auto Torque Boost/Auto Energy Saving Operation 3	[1]	N	N	N	N	Y
b14	Drive Control Selection 3	[1]	N	N	N	N	Y
b15		[1]	N	N	N	N	Y
b16		[11]	N	N	N	N	Y
		[25]	N	N	N	N	Y
b17		[24](FGI)	N	N	N	N	Y
		[19](RTU)	N	N	N	N	Y
		[24](BUS) ${ }^{\text {* }}$	N	N	N	N	Y
b18	(Auto-tuning) (Online Tuning) (No-load current)	[21]	N	N	N	N	Y
b19		[1]	N	N	N	N	Y
b20		[24](FGI)	N	N	N	N	Y
		[19](RTU)	N	N	N	N	Y
		[24](BUS)**	N	N	N	N	Y
b21	(\%R1) (\%X) (Slip compensation gain for driving) (Slip compensation response time)	[5]	N	N	N	N	Y
b22		[5]	N	N	N	N	Y
b23		[3]	N	N	N	N	Y
b24		[5]	N	N	N	N	Y
b25	(Slip compensation gain for braking)	[3]	N	N	N	N	Y
b26	(Rated slip frequency) (Iron loss factor 1)	[5]	N	N	N	N	Y
b27		[5]	N	N	N	N	Y
b28	(Iron loss factor 1) (Iron loss factor 2)	[5]	N	N	N	N	Y
b29	(Iron loss factor 3) (Magnetic saturation factor 1)	[5]	N	N	N	N	Y
b30		[3]	N	N	N	N	Y
b31	(Magnetic saturation factor 1) (Magnetic saturation factor 2)	[3]	N	N	N	N	Y
b32	(Magnetic saturation factor 3)	[3]	N	N	N	N	Y
b33	(Magnetic saturation factor 4)	[3]	N	N	N	N	Y
b34	(Magnetic saturation factor 5)	[3]	N	N	N	N	Y
b35	(Magnetic saturation extension factor a)	[3]	N	N	N	N	Y
b36	(Magnetic saturation extension factor b)	[3]	N	N	N	N	Y
b37		[3]	N	N	N	N	Y
b39	Motor 3 Selection	[1]	N	N	N	N	Y
b40	Slip Compensation 3 (Operating conditions)	[1]	N	N	N	N	Y
b41	Output Current Fluctuation Damping Gain for Motor 3	[5]	N	N	N	N	Y
b42	Motor/Parameter Switching 3 (Mode selection)	[1]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.23 List of data format numbers (b codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
b43	(Speed command filter)(Speed detection filter)$P($ Gain $)$	[7]	N	N	N	Y	Y
b44		[7]	N	N	N	Y	Y
b45		[3]	N	N	N	Y	Y
b46	I (Integral time) (Feed forward gain) (Output filter) (Notch filter resonance frequency) (Notch filter attenuation level)	[7]	N	N	N	Y	Y
b47		[5]	N	N	N	Y	Y
b48		[7]	N	N	N	N	Y
b49		[1]	N	N	N	Y	Y
b50		[1]	N	N	N	Y	Y
b51	Cumulative Motor Run Time 3	[74]	N	N	N	N	Y
b52	Startup Counter for Motor 3	[1]	N	N	N	N	Y
b53	Motor 3 (\%X correction factor 1)	[1]	N	N	N	N	Y
b54	(\%X correction factor 2)	[1]	N	N	N	N	Y
b55	(Torque current under vector control)	[24] (FGI)	N	N	N	N	Y
		[19] (RTU)	N	N	N	N	Y
		[24](BUS) *1	N	N	N	N	Y
b56	(Induced voltage factor under vector control)	[1]	N	N	N	N	Y
b57	Reserved	[7]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.24 List of data format numbers (r codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
r01	Maximum Frequency 4	[3]	N	N	N	N	Y
r02	Base Frequency 4	[3]	N	N	N	N	Y
r03	Rated Voltage at Base Frequency 4	[1]	N	N	N	N	Y
r04	Maximum Output Voltage 4	[1]	N	N	N	N	Y
r05	Torque Boost 4	[3]	N	N	N	N	Y
r06	Electronic Thermal Overload Protection for Motor 4 (Select motor characteristics) (Overload detection level)	[1]	N	N	N	N	Y
r07		[24] (FGI)	N	N	N	N	Y
		[19] (RTU)	N	N	N	N	Y
		[24] (BUS) ${ }^{\text {+1 }}$	N	N	N	N	Y
r08	(Thermal time constant)	[3]	N	N	N	N	Y
r09	$\begin{array}{rr}\text { DC Braking 4 } & \text { (Braking starting frequency) } \\ \text { (Braking level) } \\ \text { (Braking time) }\end{array}$	[3]	N	N	N	N	Y
r10		[1]	N	N	N	N	Y
r11		[5]	N	N	N	N	Y
r12	Starting Frequency 4	[3]	N	N	N	N	Y
r13	Load Selection/Auto Torque Boost/Auto Energy Saving Operation 4	[1]	N	N	N	N	Y
r14	Drive Control Selection 4	[1]	N	N	N	N	Y
r15		[1]	N	N	N	N	Y
r16		[11]	N	N	N	N	Y
		[25]	N	N	N	N	Y
r17		[24] (FGI)	N	N	N	N	Y
		[19] (RTU)	N	N	N	N	Y
		[24] (BUS) ${ }^{\text {*1 }}$	N	N	N	N	Y
r18	(Auto-tuning)	[21]	N	N	N	N	Y
r19	(Online Tuning)	[1]	N	N	N	N	Y
r20	(No-load current)	[24] (FGI)	N	N	N	N	Y
		[19] (RTU)	N	N	N	N	Y
		[24] (BUS) ${ }^{\text {*1 }}$	N	N	N	N	Y
r21	(Slip compensation gain for driving) (Slip compensation response time)	[5]	N	N	N	N	Y
r22		[5]	N	N	N	N	Y
r23		[3]	N	N	N	N	Y
r24		[5]	N	N	N	N	Y
r25	(Slip compensation gain for braking) (Rated slip frequency)	[3]	N	N	N	N	Y
r26		[5]	N	N	N	N	Y
r27	(Rated slip frequency) (Iron loss factor 1)	[5]	N	N	N	N	Y
r28	(Iron loss factor 2)	[5]	N	N	N	N	Y
r29	(Iron loss factor 3) (Magnetic saturation factor 1)	[5]	N	N	N	N	Y
r30		[3]	N	N	N	N	Y
r31	(Magnetic saturation factor 2)	[3]	N	N	N	N	Y
r32	(Magnetic saturation factor 3)	[3]	N	N	N	N	Y
r33	(Magnetic saturation factor 4)	[3]	N	N	N	N	Y
r34	(Magnetic saturation factor 5)	[3]	N	N	N	N	Y
r35		[3]	N	N	N	N	Y
r36	(Magnetic saturation extension factor a) (Magnetic saturation extension factor b)	[3]	N	N	N	N	Y
r37	(Magnetic saturation extension factor c)	[3]	N	N	N	N	Y
r39	Motor 4 Selection	[1]	N	N	N	N	Y
r40	Slip Compensation 4 (Operating conditions)	[1]	N	N	N	N	Y
r41	Output Current Fluctuation Damping Gain for Motor 4	[5]	N	N	N	N	Y
r42	Motor/Parameter Switching 4 (Mode selection)	[1]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.24 List of data format numbers (r codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
r43	Speed Control 4 (Speed command filter)	[7]	N	N	N	Y	Y
r44	(Speed detection filter)	[7]	N	N	N	Y	Y
r45	P (Gain)	[3]	N	N	N	Y	Y
r46	1 (Integral time)	[7]	N	N	N	Y	Y
r47	(Feed forward gain)	[5]	N	N	N	Y	Y
r48	(Output filter)	[7]	N	N	N	N	Y
r49	(Notch filter resonance frequency)	[1]	N	N	N	Y	Y
r50	(Notch filter attenuation level)	[1]	N	N	N	Y	Y
r51	Cumulative Motor Run Time 4	[74]	N	N	N	N	Y
r52	Startup Counter for Motor 4	[1]	N	N	N	N	Y
r53	Motor 4 $(\% \mathrm{X}$ correction factor 1) $(\% \mathrm{X}$ correction factor 2) (Torque current under vector control) (Induced voltage factor under vector control)	[1]	N	N	N	N	Y
r54		[1]	N	N	N	N	Y
r55		[24] (FGI)	N	N	N	N	Y
		[19] (RTU)	N	N	N	N	Y
		[24](BUS) ${ }^{-1}$	N	N	N	N	Y
r56		[1]	N	N	N	N	Y
r57	Reserved	[7]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.25 List of data format numbers (J codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
J01	(Mode selection) (Remote command SV)	[1]	Y	Y	Y	Y	Y
J02		[1]	Y	Y	Y	Y	Y
J03	$P($ gain $)$I (Integral time)	[7]	Y	Y	Y	Y	Y
J04		[3]	Y	Y	Y	Y	Y
J05	D (Differential time)	[5]	Y	Y	Y	Y	Y
J06	(Feedback filter) (Pressurization starting frequency)	[3]	Y	Y	Y	Y	Y
J08		[3]	N	N	N	N	Y
J09	(Pressurizing time)	[1]	N	N	N	N	Y
J10	(Anti reset windup)	[1]	N	Y	Y	Y	Y
J11	(Select alarm output)	[1]	N	Y	Y	Y	Y
J12	(Upper level alarm (AH))	[2]	N	Y	Y	Y	Y
J13	(Lower level alarm (AL)) (Stop frequency for slow flowrate)	[2]	N	Y	Y	Y	Y
J15		[1]	N	Y	N	N	N
	(Stop frequency for slow flowrate)	[3]	Y	N	N	Y	Y
J16	(Slow flowrate level stop latency)	[1]	Y	Y	N	Y	Y
J17	(Starting frequency)	[1]	N	Y	N	N	N
		[3]	Y	N	N	Y	Y
J18	(Upper limit of PID process output)	[1] ${ }^{* 1}$	N	Y	N	N	N
		[2] ${ }^{1}$	N	N	Y	Y	Y
J19	(Lower limit of PID process output)	[1] ${ }^{1 /}$	N	Y	N	N	N
		[2] ${ }^{1}$	N	N	Y	Y	Y
J21	Dew Condensation Prevention (Duty)	[1]	N	Y	N	N	Y
J22	Commercial Power Switching Sequence	[1]	N	Y	N	N	Y
J23	(Starting feedback deviation level)(Starting latency from the flow rate stop)(Speed command filter)(Dancer reference position)(Detection width of dancer position deviation)	[3]	Y	N	N	Y	N
J24		[1]	Y	N	N	Y	N
J56		[5]	N	N	Y	N	Y
J57		[2]	N	N	Y	Y	Y
J58		[1]	N	N	Y	Y	Y
J59	$\begin{array}{r} \mathrm{P}(\text { Gain }) 2 \\ \text { I (Integral time) } 2 \end{array}$	[7]	N	N	Y	Y	Y
J60		[3]	N	N	Y	Y	Y
J61	D (Derivative time) 2 (PID control block selection)	[5]	N	N	Y	Y	Y
J62		[1]	N	N	Y	Y	Y
J63	Overload Stop (Detection value)	[1]	N	N	Y	Y	N
J64	(Detection level) (Mode selection) (Operation condition) (Timer)	[1]	N	N	Y	Y	N
J65		[1]	N	N	Y	Y	N
J66		[1]	N	N	Y	Y	N
J67		[5]	N	N	Y	Y	N
J68	Brake Signal (Brake OFF current) (Brake OFF frequency/speed) (Brake OFF timer) (Brake ON frequency/speed) (Brake ON timer)	[1]	Y	N	Y	N	Y
		[5]	N	N	N	Y	N
J69		[3]	Y	N	Y	Y	Y
J70		[3]	Y	N	Y	N	Y
		[5]	N	N	N	Y	N
J71		[3]	Y	N	Y	Y	Y
J72		[3]	Y	N	Y	N	Y
		[5]	N	N	N	Y	N

*1 The value of 999 will be treated as $7 \mathrm{FFF}_{\mathrm{H}}$

Table 5.25 List of data format numbers (J codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
J73	(Start timer)(Start point; upper digits)	[3]	N	N	Y	Y	N
J74		[73]	N	N	Y	Y	N
J75	(Start point; lower digits) (Preset point; upper digits)	[75]	N	N	Y	Y	N
J76		[73]	N	N	Y	Y	N
J77	(Preset point; upper digits) (Preset point; lower digits)	[75]	N	N	Y	Y	N
J78	(Creep speed SW point; upper digits) (Creep speed SW point; lower digits)	[1]	N	N	Y	Y	N
J79		[1]	N	N	Y	Y	N
J80	(Creep speed) (End point; upper digits)	[1]	N	N	Y	Y	N
J81		[73]	N	N	Y	Y	N
J82	(End point; lower digits)	[1]	N	N	Y	Y	N
J83	(Positioning allowance)	[1]	N	N	Y	Y	N
J84	(End timer) (Coasting Compensation)	[3]	N	N	Y	Y	N
J85	(Coasting Compensation) (End point command)	[1]	N	N	Y	Y	N
J86		[1]	N	N	Y	Y	N
J87	(Preset positioning requirement)	[1]	N	N	Y	Y	N
J88	(Position detection direction)	[1]	N	N	Y	Y	N
J90	Overload Stop Function P (Gain)	[7]	N	N	Y	Y	N
J91	I (Integral time) (Level adjustment)	[7]	N	N	Y	Y	N
J92		[3]	N	N	Y	Y	N
J95	(Brake OFF torque)	[1]	N	N	N	N	Y
	(Speed condition selection)	[5]	N	N	N	Y	N
J96		[1]	N	N	N	Y	Y
J97	(Gain)(Completion timer)(Completion width)	[5]	N	N	N	N	Y
		[7]	N	N	N	Y	N
J98		[7]	N	N	N	Y	Y
J99		[1]	N	N	N	Y	Y
J105	(Display unit) (Maximum scale) (Minimum scale)	[1]	N	N	N	Y	N
J106		[12]	N	N	N	Y	N
J107		[12]	N	N	N	Y	N
J136	PID Command (Multistep command 1)	[12]	N	N	N	Y	N
J137	(Multistep command 2)	[12]	N	N	N	Y	N
J138	(Multistep command 3)	[12]	N	N	N	Y	N

Table 5.26 List of data format numbers (d codes)

Table 5.26 List of data format numbers (d codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
d79	Reserved	[1]	N	N	N	Y	N
d81		[1]	N	N	N	N	Y
d82	Field Weakning Control (PG less vector control)	[1]	N	N	N	N	Y
d83	Field Weakning Lower Limit (PG less vector control)	[1]	N	N	N	N	Y
d84	Reserved	[1]	N	N	N	N	Y
d85		[1]	N	N	N	N	Y
d86	Acceleration and Deceleration Output Filter	[7]	N	N	N	N	Y
d88	Reserved	[5]	N	N	N	Y	N
d90	Magnetic Flux Level During Deceleration (Vector control)	[1]	N	N	N	Y	Y
d91	Reserved	[5]	N	N	N	Y	Y
d92		[5]	N	N	N	Y	Y
d93		[5]	N	N	N	Y	N
d94		[5]	N	N	N	Y	N
d95		[5]	N	N	N	Y	N
d96		[4]	N	N	N	Y	N
d97		[4]	N	N	N	Y	N
d98		[1]	N	N	N	N	Y
d99		[1]	N	N	N	Y	Y

Table 5.27 List of data format numbers (U codes only FRENIC-MEGA)

Code	Name		Format number	Support				
				Mini	Eco	Multi	Ace	MEGA
U00	Customizable Logic	(Mode selection)	[1]	N	N	N	Y	Y
U01	Customizable Logic Step 1	(Input 1)(Input 2)(Logic circuit)(Type of timer)(Timer)	[1]	N	N	N	N	Y
U02			[1]	N	N	N	N	Y
U03			[1]	N	N	N	N	Y
U04			[1]	N	N	N	N	Y
U05			[5]	N	N	N	N	Y
U06	Customizable Logic Step 2	(Input 1)(Input 2)(Logic circuit)(Type of timer)(Timer)	[1]	N	N	N	N	Y
U07			[1]	N	N	N	N	Y
U08			[1]	N	N	N	N	Y
U09			[1]	N	N	N	N	Y
U10			[5]	N	N	N	N	Y
U11	Customizable Logic Step 3	(Input 1)(Input 2)(Logic circuit)(Type of timer)(Timer)	[1]	N	N	N	N	Y
U12			[1]	N	N	N	N	Y
U13			[1]	N	N	N	N	Y
U14			[1]	N	N	N	N	Y
U15			[5]	N	N	N	N	Y
U16	Customizable Logic Step 4	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U17			[1]	N	N	N	N	Y
U18			[1]	N	N	N	N	Y
U19			[1]	N	N	N	N	Y
U20			[5]	N	N	N	N	Y
U21	Customizable Logic Step 5	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U22			[1]	N	N	N	N	Y
U23			[1]	N	N	N	N	Y
U24			[1]	N	N	N	N	Y
U25			[5]	N	N	N	N	Y
U26	Customizable Logic Step 6	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U27			[1]	N	N	N	N	Y
U28			[1]	N	N	N	N	Y
U29			[1]	N	N	N	N	Y
U30			[5]	N	N	N	N	Y
U31	Customizable Logic Step 7	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U32			[1]	N	N	N	N	Y
U33			[1]	N	N	N	N	Y
U34			[1]	N	N	N	N	Y
U35			[5]	N	N	N	N	Y
U36	Customizable Logic Step 8	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U37			[1]	N	N	N	N	Y
U38			[1]	N	N	N	N	Y
U39			[1]	N	N	N	N	Y
U40			[5]	N	N	N	N	Y
U41	Customizable Logic Step 9	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U42			[1]	N	N	N	N	Y
U43			[1]	N	N	N	N	Y
U44			[1]	N	N	N	N	Y
U45			[5]	N	N	N	N	Y
U46	Customizable Logic Step 10	(Input 1) (Input 2) (Logic circuit) (Type of timer) (Timer)	[1]	N	N	N	N	Y
U47			[1]	N	N	N	N	Y
U48			[1]	N	N	N	N	Y
U49			[1]	N	N	N	N	Y
U50			[5]	N	N	N	N	Y

Table 5.27 List of data format numbers (U00 to U50 only FRENIC-Ace)

Code	Name		Format number	Support				
				Mini	Eco	Multi	Ace	MEGA
U00	Customizable Logic	(Mode selection)	[1]	N	N	N	Y	Y
U01	Customizable Logic Step 1	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U02			[1]	N	N	N	Y	N
U03			[1]	N	N	N	Y	N
U04			[12]	N	N	N	Y	N
U05			[12]	N	N	N	Y	N
U06	Customizable Logic Step 2	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U07			[1]	N	N	N	Y	N
U08			[1]	N	N	N	Y	N
U09			[12]	N	N	N	Y	N
U10			[12]	N	N	N	Y	N
U11	Customizable Logic Step 3	$\begin{array}{r} \text { (Logic circuit) } \\ \text { (Input 1) } \\ \text { (Input 2) } \\ \text { (Type of timer) } \\ \text { (Timer) } \end{array}$	[1]	N	N	N	Y	N
U12			[1]	N	N	N	Y	N
U13			[1]	N	N	N	Y	N
U14			[12]	N	N	N	Y	N
U15			[12]	N	N	N	Y	N
U16	Customizable Logic Step 4	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U17			[1]	N	N	N	Y	N
U18			[1]	N	N	N	Y	N
U19			[12]	N	N	N	Y	N
U20			[12]	N	N	N	Y	N
U21	Customizable Logic Step 5	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U22			[1]	N	N	N	Y	N
U23			[1]	N	N	N	Y	N
U24			[12]	N	N	N	Y	N
U25			[12]	N	N	N	Y	N
U26	Customizable Logic Step 6	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U27			[1]	N	N	N	Y	N
U28			[1]	N	N	N	Y	N
U29			[12]	N	N	N	Y	N
U30			[12]	N	N	N	Y	N
U31	Customizable Logic Step 7	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U32			[1]	N	N	N	Y	N
U33			[1]	N	N	N	Y	N
U34			[12]	N	N	N	Y	N
U35			[12]	N	N	N	Y	N
U36	Customizable Logic Step 8	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U37			[1]	N	N	N	Y	N
U38			[1]	N	N	N	Y	N
U39			[12]	N	N	N	Y	N
U40			[12]	N	N	N	Y	N
U41	Customizable Logic Step 9	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U42			[1]	N	N	N	Y	N
U43			[1]	N	N	N	Y	N
U44			[12]	N	N	N	Y	N
U45			[12]	N	N	N	Y	N
U46	Customizable Logic Step 10	(Logic circuit) (Input 1) (Input 2) (Type of timer) (Timer)	[1]	N	N	N	Y	N
U47			[1]	N	N	N	Y	N
U48			[1]	N	N	N	Y	N
U49			[12]	N	N	N	Y	N
U50			[12]	N	N	N	Y	N

Table 5.27 List of data format numbers (U codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
U51	Customizable Logic Step 11	[1]	N	N	N	Y	N
U52		[1]	N	N	N	Y	N
U53		[1]	N	N	N	Y	N
U54		[12]	N	N	N	Y	N
U55		[12]	N	N	N	Y	N
U56	Customizable Logic Step 12	[1]	N	N	N	Y	N
U57		[1]	N	N	N	Y	N
U58		[1]	N	N	N	Y	N
U59		[12]	N	N	N	Y	N
U60		[12]	N	N	N	Y	N
U61	Customizable Logic Step 13	[1]	N	N	N	Y	N
U62		[1]	N	N	N	Y	N
U63		[1]	N	N	N	Y	N
U64		[12]	N	N	N	Y	N
U65		[12]	N	N	N	Y	N
U66	Customizable Logic Step 14	[1]	N	N	N	Y	N
U67		[1]	N	N	N	Y	N
U68		[1]	N	N	N	Y	N
U69		[12]	N	N	N	Y	N
U70		[12]	N	N	N	Y	N
U71	Customizable Logic Output Signal	[1]	N	N	N	Y	Y
U72		[1]	N	N	N	Y	Y
U73		[1]	N	N	N	Y	Y
U74		[1]	N	N	N	Y	Y
U75		[1]	N	N	N	Y	Y
U76		[1]	N	N	N	Y	N
U77		[1]	N	N	N	Y	N
U78		[1]	N	N	N	Y	N
U79		[1]	N	N	N	Y	N
U80		[1]	N	N	N	Y	N
U81	Customizable Logic Output Signal 1 (Function selection) 2 (Function selection) 3 (Function selection) 4 (Function selection) 5 (Function selection) 6 (Function selection) 7 (Function selection) 8 (Function selection) 9 (Function selection) 10 (Function selection)	[1]	N	N	N	Y	Y
U82		[1]	N	N	N	Y	Y
U83		[1]	N	N	N	Y	Y
U84		[1]	N	N	N	Y	Y
U85		[1]	N	N	N	Y	Y
U86		[1]	N	N	N	Y	N
U87		[1]	N	N	N	Y	N
U88		[1]	N	N	N	Y	N
U89		[1]	N	N	N	Y	N
U90		[1]	N	N	N	Y	N
U91	Customizable Logic Timer Monitor (Step selection)	[1]	N	N	N	Y	Y
U92	Customizable Logic Calculation Coefficient(Mantissa of calculation coefficient KA1)(Exponent of calculation coefficient KA1)(Mantissa of calculation coefficient KB1)(Exponent of calculation coefficient KB1)(Mantissa of calculation coefficient KC1)(Exponent of calculation coefficient KC1)	[8]	N	N	N	Y	N
U93		[2]	N	N	N	Y	N
U94		[8]	N	N	N	Y	N
U95		[2]	N	N	N	Y	N
U96		[8]	N	N	N	Y	N
U97		[2]	N	N	N	Y	N

Table 5.27 List of data format numbers (U100 to U199 only FRENIC-Ace)

Code	Name			Format number	Support					
				Mini	Eco	Multi	Ace	MEGA		
U100	Customizable Logic	(Task proc	tting)		[1]	N	N	N	Y	N
U101	Customizable Logic Conversion point 1		(X1)	[12]	N	N	N	Y	N	
U102			(Y1)	[12]	N	N	N	Y	N	
U103			(X2)	[12]	N	N	N	Y	N	
U104			(Y2)	[12]	N	N	N	Y	N	
U105			(X3)	[12]	N	N	N	Y	N	
U106			(Y3)	[12]	N	N	N	Y	N	
U107	Automatic Calculation of Conversion Coefficients			[1]	N	N	N	Y	N	
U121	Customizable Logic User Parameter 19			[12]	N	N	N	Y	N	
U122				[12]	N	N	N	Y	N	
U123				[12]	N	N	N	Y	N	
U124				[12]	N	N	N	Y	N	
U125				[12]	N	N	N	Y	N	
U126				[12]	N	N	N	Y	N	
U127				[12]	N	N	N	Y	N	
U128				[12]	N	N	N	Y	N	
U129				[12]	N	N	N	Y	N	
U130				[12]	N	N	N	Y	N	
U131				[12]	N	N	N	Y	N	
U132				[12]	N	N	N	Y	N	
U133				[12]	N	N	N	Y	N	
U134				[12]	N	N	N	Y	N	
U135				[12]	N	N	N	Y	N	
U136				[12]	N	N	N	Y	N	
U137				[12]	N	N	N	Y	N	
U138				[12]	N	N	N	Y	N	
U139				[12]	N	N	N	Y	N	
U140				[12]	N	N	N	Y	N	
U171	Customizable Logic Strage Area 1			[12]	N	N	N	Y	N	
U172				[12]	N	N	N	Y	N	
U173				[12]	N	N	N	Y	N	
U174				[12]	N	N	N	Y	N	
U175				[12]	N	N	N	Y	N	
U190	Customizable Logic Step No. Selection			[1]	N	N	N	Y	N	
U191	Customizable Logic	(Logic circuit)		[1]	N	N	N	Y	N	
U192				[1]	N	N	N	Y	N	
U193		(Input 2) (Type of timer)		[1]	N	N	N	Y	N	
U194				[12]	N	N	N	Y	N	
U195			imer)	[12]	N	N	N	Y	N	
U196	Customizable logic ROM version Upper digit (Monitor)			[1]	N	N	N	Y	N	
U197				[1]	N	N	N	Y	N	
U198	Customizable Logic ROM version Lower digit (Monitor)(For User setting)			[1]	N	N	N	Y	N	
U199				[1]	N	N	N	Y	N	

Table 5.28 List of data format numbers (y codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
y01	RS-485 Communications $1 \quad$ (Station address)(Communications error processing)(Timer)(Baud rate)(Data length)(Parity check)(Stop bits)(No response error detection time)(Response interval)(Protocol selection)	[1]	Y	Y	Y	Y	Y
y02		[1]	Y	Y	Y	Y	Y
y03		[3]	Y	Y	Y	Y	Y
y04		[1]	Y	Y	Y	Y	Y
y05		[1]	Y	Y	Y	Y	Y
y06		[1]	Y	Y	Y	Y	Y
y07		[1]	Y	Y	Y	Y	Y
y08		[1]	Y	Y	Y	Y	Y
y09		[5]	Y	Y	Y	Y	Y
y10		[1]	Y	Y	Y	Y	Y
y11	RS-485 Communications 2 (Station address)(Communications error processing)(Timer)(Baud rate)(Data length)(Parity check)(Stop bits)(No response error detection time)(Response interval)(Protocol selection)	[1]	N	Y	Y	Y	Y
y12		[1]	N	Y	Y	Y	Y
y13		[3]	N	Y	Y	Y	Y
y14		[1]	N	Y	Y	Y	Y
y15		[1]	N	Y	Y	Y	Y
y16		[1]	N	Y	Y	Y	Y
y17		[1]	N	Y	Y	Y	Y
y18		[1]	N	Y	Y	Y	Y
y19		[5]	N	Y	Y	Y	Y
y20		[1]	N	Y	Y	Y	Y
y21	Bulit-in CAN Communication (Station address)	[1]	N	N	N	Y	N
y24	Response Error (Timer)	[1]	N	N	N	Y	N
y25	Bulit-in CAN Communication(Assign writing function code No. 1)(Assign writing function code No. 2)(Assign writing function code No. 3)(Assign writing function code No. 4)(Assign writing function code No. 5)(Assign writing function code No. 6)(Assign writing function code No. 7)(Assign writing function code No. 8)(Operation selection)(Communications error processing)(No response error detection time)(Operation Selection in abort status)	[1]	N	N	N	$Y^{* 1}$	N
y26		[1]	N	N	N	$Y^{* 1}$	N
y27		[1]	N	N	N	Y^{*}	N
y28		[1]	N	N	N	$\mathrm{Y}^{* 1}$	N
y29		[1]	N	N	N	$Y^{* 1}$	N
y30		[1]	N	N	N	$\mathrm{Y}^{* 1}$	N
y31		[1]	N	N	N	$Y^{* 1}$	N
y32		[1]	N	N	N	$Y^{* 1}$	N
y33		[1]	N	N	N	$Y^{* 1}$	N
y34		[1]	N	N	N	$Y^{* 1}$	N
y35		[3]	N	N	N	$Y^{* 1}$	N
y36		[1]	N	N	N	$\mathrm{Y}^{* 1}$	N
y95	Data Clear Processing for Communications Error	[1]	N	N	N	Y	N
y96	Reserved	[1]	N	N	N	N	Y
y97	Communications Data Storage Selection	[1]	Y	N	N	Y	Y
y98	Bus Link Function (Mode selection)	[1]	N	Y	Y	Y	Y
y99	Loader Link Function (Mode selection)	[1]	Y	Y	Y	Y	Y

*1 Not applicable with FRN $\square \square E 2 \square-\square$ C, FRN $\square \square E 2 \square-\square G B$

Table 5.29 List of data format numbers (o codes)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
001	Terminal [01] Function			[1]	N	N	N	Y	N
002	Terminal [O2] Function		[1]	N	N	N	Y	N	
003	Terminal [O3] Function		[1]	N	N	N	Y	N	
004	Terminal [O4] Function		[1]	N	N	N	Y	N	
005	Terminal [05] Function		[1]	N	N	N	Y	N	
006	Terminal [06] Function		[1]	N	N	N	Y	N	
007	Terminal [07] Function		[1]	N	N	N	Y	N	
008	Terminal [08] Function		[1]	N	N	N	Y	N	
019	DI Option		[1]	N	N	N	Y	Y	
020	DI Option(DI function selection)		[1]	N	N	N	Y	Y	
021	DO Option	(DO function selection)	[1]	N	N	Y	Y	Y	
027	Response Error	(Operation mode selection) (Timer)	[1]	N	Y	Y	Y	Y	
028			[3]	N	Y	Y	Y	Y	
030	Bus Setting Parameter		[1]	N	Y	Y	Y	Y	
031			[1]	N	Y	Y	Y	Y	
032			[1]	N	Y	Y	Y	Y	
033			[1]	N	Y	Y	Y	Y	
034			[1]	N	Y	Y	Y	Y	
035			[1]	N	Y	Y	Y	Y	
036			[1]	N	Y	Y	Y	Y	
037			[1]	N	Y	Y	Y	Y	
038			[1]	N	Y	Y	Y	Y	
039			[1]	N	Y	Y	Y	Y	
040	Write Code Assignment		[1]	N	Y	Y	Y	Y	
041			[1]	N	Y	Y	Y	Y	
042			[1]	N	Y	Y	Y	Y	
043			[1]	N	Y	Y	Y	Y	
044			[1]	N	Y	Y	Y	Y	
045			[1]	N	Y	Y	Y	Y	
046			[1]	N	Y	Y	Y	Y	
047			[1]	N	Y	Y	Y	Y	
048	Read Code Assignment		[1]	N	Y	Y	Y	Y	
049			[1]	N	Y	Y	Y	Y	
050			[1]	N	Y	Y	Y	Y	
051			[1]	N	Y	Y	Y	Y	
052			[1]	N	Y	Y	Y	Y	
053			[1]	N	Y	Y	Y	Y	
054			[1]	N	Y	Y	Y	Y	
055			[1]	N	Y	Y	Y	Y	
056			[1]	N	Y	Y	Y	Y	
057			[1]	N	Y	Y	Y	Y	
058			[1]	N	Y	Y	Y	Y	
059			[1]	N	Y	Y	Y	Y	
060	Terminal [32] Extended F	tion	[1]	N	N	N	Y	Y	
061		(Offset)	[4]	N	N	N	Y	Y	
062		(Gain)	[5]	N	N	N	Y	Y	
063		(Filter time constant)	[5]	N	N	N	Y	Y	
064			[5]	N	N	N	Y	Y	
065		(Gain base point) (Polarity)	[1]	N	N	N	Y	Y	
066		(Bias value)	[6]	N	N	N	Y	*1	

Table 5.29 List of data format numbers (o codes) (Continued)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
067	Terminal [32] Extended Function	(Bias base point) (Display unit) (Maximum scale) (Minimum scale)		[5]	N	N	N	Y	*1
069			[1]	N	N	N	Y	*1	
070			[12]	N	N	N	Y	*1	
071			[12]	N	N	N	Y	*1	
075	Terminal [C2] Extended Function	(Range selection) (Function) (Offset) (Gain) (Filter time constant) (Gain base point) (Bias value) (Bias base point) (Display unit) (Maximum scale) (Minimum scale)	[1]	N	N	N	Y	*1	
076			[1]	N	N	N	Y	N	
077			[4]	N	N	N	Y	N	
078			[5]	N	N	N	Y	N	
079			[5]	N	N	N	Y	N	
081			[5]	N	N	N	Y	N	
082			[6]	N	N	N	Y	N	
083			[5]	N	N	N	Y	N	
085			[1]	N	N	N	Y	N	
086			[12]	N	N	N	Y	N	
087			[12]	N	N	N	Y	N	
090	Terminal [Ao/CS2]	(Function) (Voltage adjustment) (Polarity)	[1]	N	N	N	Y	N	
091			[1]	N	N	N	Y	N	
093			[1]	N	N	N	Y	N	
096	Terminal [CS/CS1]	(Function) (Voltage adjustment)	[1]	N	N	N	Y	N	
097			[1]	N	N	N	Y	N	
0101	Terminal [11] Function		[1]	N	N	N	Y	N	
0102	Terminal [12] Function		[1]	N	N	N	Y	N	
0103	Terminal [13] Function		[1]	N	N	N	Y	N	
0104	Terminal [14] Function		[1]	N	N	N	Y	N	
0105	Terminal [15] Function		[1]	N	N	N	Y	N	
0106	Terminal [16] Function		[1]	N	N	N	Y	N	
0107	Terminal [17] Function		[1]	N	N	N	Y	N	
0108	Terminal [18] Function		[1]	N	N	N	Y	N	
0109	Terminal [19] Function		[1]	N	N	N	Y	N	
0110	Terminal [I10] Function		[1]	N	N	N	Y	N	
0111	Terminal [I11] Function		[1]	N	N	N	Y	N	
0112	Terminal [I12] Function		[1]	N	N	N	Y	N	
0113	Terminal [l13] Function		[1]	N	N	N	Y	N	

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
066	Terminal [C2]	$\begin{array}{r} \text { (Function) } \\ \text { (Offset) } \\ \text { (Gain) } \\ \text { (Filter time constant) } \\ \text { (Gain base point) } \end{array}$		[1]	N	N	N	N	Y
067			[4]	N	N	N	N	Y	
068			[5]	N	N	N	N	Y	
069			[5]	N	N	N	N	Y	
o70			[5]	N	N	N	N	Y	
071	Terminal [Ao/CS2]	(Function) (Voltage adjustment) (Polarity)	[1]	N	N	N	N	Y	
072			[1]	N	N	N	N	Y	
073			[1]	N	N	N	N	Y	
074	Terminal [CS/CS1]	(Function) (Voltage adjustment)	[1]	N	N	N	N	Y	
075			[1]	N	N	N	N	Y	

Table 5.30 List of data format numbers (K codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
K01	LCD Monitor TP-A1 (Language selection)	[1]	N	N	N	Y	N
K02	(Backlight OFF Time)	[1]	N	N	N	Y	N
K03	(Backlight brightness control)	[1]	N	N	N	Y	N
K04	(Contrast control)	[1]	N	N	N	Y	N
K08	(LCD Monitor Status Display/Hide Selection)	[1]	N	N	N	Y	N
K15	(Sub Monitor)	[1]	N	N	N	Y	N
K16	(Sub Monitor 1)	[1]	N	N	N	Y	N
K17	(Sub Monitor 2)	[1]	N	N	N	Y	N
K20	(Bar Graph 1)	[1]	N	N	N	Y	N
K21	(Bar Graph 2)	[1]	N	N	N	Y	N
K22	(Bar Graph 3)	[1]	N	N	N	Y	N
K91	(Drive Mode < Shortcut Function)	[1]	N	N	N	Y	N
K92	(Drive Mode > Shortcut Function)	[1]	N	N	N	Y	N

Table 5.31 List of data format numbers (S codes)

Code	Name		Format number	Support				
				Mini	Eco	Multi	Ace	MEGA
S01	Frequency Reference (p.u.)		[29]	Y	Y	Y	Y	Y
S02	Torque Command		[6]	N	N	N	Y	Y
S03	Torque Current Command		[6]	N	N	N	Y	Y
S05	Frequency Reference		[22]	Y	Y	Y	Y	Y
S06	Operation Command		[14]	Y	Y	Y	Y	Y
S07	Universal DO		[15]	N	Y	$\mathrm{Y}^{* 1}$	Y	Y
S08	Acceleration Time F07		[3]	Y	Y	Y	Y	Y
S09	Deceleration Time F08		[3]	Y	Y	Y	Y	Y
S10	Torque Limiter 1	(Drive)	[1]	N	N	Y	N	N
	Torque Limiter 1-1		[6]	N	N	N	Y	Y
S11	Torque Limiter 1	(Brake)	[1]	N	N	Y	N	N
	Torque Limiter 1-2		[6]	N	N	N	Y	Y
S12	Universal Ao		[29]	N	Y	Y	Y	Y
S13	PID Command		[29]	Y	Y	Y	Y	Y
S14	Alarm Reset Command		[1]	Y	Y	Y	Y	Y
S19	Speed Command		[2]	N	N	N	Y	Y

*1 Not applicable with the FRENIC-Multi ROM version 0799 or older.

Table 5.32 List of data format numbers (M codes)

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.32 List of data format numbers (M codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
M46	Life of Main Circuit Capacitor	[3]	Y	Y	Y	Y	Y
M47	Life of PC Board Electrolytic Capacitor	[1]	N	Y	Y	N	N
		[74]	Y	N	N	Y	Y
M48	Life of Cooling Fan	[1]	N	Y	Y	N	N
		[74]	Y	N	N	Y	Y
M49	Input Terminal Voltage[12] (p.u.)	[29]	Y	Y	Y	Y	Y
M50	Input Terminal Current[C1] (p.u.)	[29]	Y	Y	Y	Y	Y
M52	Input Terminal Voltage[32] (p.u.)	[29]	N	N	N	Y	Y
M53	Input Terminal Voltage[C2] (p.u.)	[29]	N	N	N	Y	Y
M54	Input Terminal Voltage[V2] (p.u.)	[29]	N	Y	Y	Y	Y
M61	Inverter Internal Air Temperature	[1]	N	Y	N	Y	Y
M62	Heat Sink Temperature	[1]	Y	Y	Y	Y	Y
M63	Load Factor	[6]	N	Y	Y	Y	Y
M64	Motor Output	[6]	N	Y	Y	Y	Y
M65	Motor Output on Alarm	[29]	N	Y	Y	Y	Y
M66	Speed Detection	[29]	N	N	N	Y	Y
M67	Transmission Error Transaction Code (RS-485 port2)	[20]	N	N	N	Y	Y
M68	PID Final Command	[29]	Y	Y	Y	Y	Y
M69	Inverter Rated Current	[24](FGI)	Y	Y	Y	Y	Y
		[19](RTU)	Y	Y	Y	Y	Y
		[24](BUS) ${ }^{* 1}$	N	Y	Y	Y	Y
M70	Operation Status 2	[44]	Y	Y	Y	Y	Y
M71	Input Terminal Information	[14]	Y	Y	Y	Y	Y
M72	PID Feedback Value	[29]	Y	Y	Y	Y	Y
M73	PID Output	[29]	Y	Y	Y	Y	Y
M74	Running Status 2	[76]	Y	N	N	Y	Y
M76	Service Life of DC Link Bus Capacitor $\begin{array}{r}\text { (Elapsed time) } \\ \text { (Remaining time) }\end{array}$	[74]	N	N	N	Y	Y
M77		[74]	N	N	N	Y	Y
M78	Rotation Speed Command	[2]	N	N	N	Y	Y
M79	Rotation Cpeed	[2]	N	N	N	Y	Y
M81	Remaining Time Before The Next Motor 1 Maintenance	[74]	Y	N	N	Y	Y
M85	Remaining Startup Times Before The Next Maintenance	[1]	Y	N	N	Y	Y
M86	$\begin{array}{rr}\text { Light Alarm Contents } & \text { (Latest) } \\ \text { (Last) } \\ \text { (2nd last) } \\ \text { (3rd last) }\end{array}$	[10]	N	N	N	N	Y
		[41]	N	N	N	Y	N
M87		[10]	N	N	N	N	Y
		[41]	N	N	N	Y	N
M88		[10]	N	N	N	N	Y
		[41]	N	N	N	Y	N
M89		[10]	N	N	N	N	Y
		[41]	N	N	N	Y	N

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.33 List of data format numbers (W codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
W01	Running Status	[16]	Y	Y	Y	Y	Y
W02	Frequency Reference	[22]	Y	Y	Y	Y	Y
W03	Output Frequency (Before slip compensation)	[22]	Y	Y	Y	Y	Y
W04	Output Frequency (After slip compensation)	[22]	Y	N	Y	Y	Y
W05	Output Current	[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24](BUS) *1	N	Y	Y	Y	Y
W06	Output Voltage	[3]	Y	Y	Y	Y	Y
W07	Torque	[2]	N	Y	Y	Y	Y
W08	Motor Speed	[37]	N	Y	Y	Y	Y
W09	Load Shaft Speed	[37]	Y	Y	Y	Y	Y
W10	Line Speed	[37]	Y	N	Y	Y	Y
W11	PID Process Command	[12]	Y	Y	Y	Y	Y
W12	PID Feedback Value	[12]	Y	Y	Y	Y	Y
W13	Level of Torque Value A	[1]	N	N	Y	N	N
		[2]	N	N	N	Y	Y
W14	Level of Torque Value B	[1]	N	N	Y	N	N
		[2]	N	N	N	Y	Y
W15	Ratio Value	[5]	N	N	N	Y	Y
W16	Motor Speed Set Value	[37]	N	Y	Y	Y	Y
W17	Load Shaft Set Value	[37]	Y	Y	Y	Y	Y
W18	Line Speed Set Value	[37]	Y	N	Y	Y	Y
W19	Constant Feed Time Set Value	[37]	Y	N	Y	Y	N
W20	Constant Feed Time	[37]	Y	N	Y	Y	N
W21	Input Power	[24]	Y	Y	Y	Y	Y
W22	Motor Output	[24]	N	Y	Y	Y	Y
W23	Load Rate	[2]	N	Y	Y	Y	Y
W24	Torque Current	[2]	N	N	N	Y	Y
W26	Flux Command Value	[2]	N	N	N	Y	Y
W27	Timer Operation Remaining Time	[1]	Y	N	Y	Y	N
W28	Operation Command Source	[67]	Y	Y	Y	Y	Y
W29	Frequency and PID Command Source	[68]	Y	Y	Y	Y	Y
W30	Speed at Percentage	[5]	N	Y	Y	Y	Y
W31	Speed Set Value at Percentage	[5]	N	Y	Y	Y	Y
W32	PID Output	[4]	Y	Y	Y	Y	Y
W33	Analog Input Monitor	[12]	N	Y	N	Y	Y
W35	Terminal [32] Input Voltage	[4]	N	N	N	Y	Y
W36	Terminal [C2] Input Current	[3]	N	N	N	N	Y
		[4]	N	N	N	Y	N
W37	Terminal [AO] Output Voltage	[4]	N	N	N	Y	Y
W38	Terminal [CS] Output Current	[3]	N	N	N	Y	Y
W39	Terminal [X7] Pulse Input Monitor	[6]	N	N	N	Y	Y
W40	Control Circuit Terminal $\begin{array}{r}\text { (Input) } \\ \text { (Output) }\end{array}$	[43]	Y	Y	Y	Y	Y
W41		[15]	Y	Y	Y	Y	Y
W42	$\begin{array}{lr}\text { Communications Control Signal } & \begin{array}{r}\text { (Input) } \\ \text { (Output) }\end{array} \\ \text { Terminal [12] Input Voltage } & \end{array}$	[14]	Y	Y	Y	Y	Y
W43		[15]	Y	Y	Y	Y	Y
W44		[4]	Y	Y	Y	Y	Y
W45	Terminal [C1] Input Current	[3]	N	Y	Y	N	N
		[4]	Y	N	N	Y	Y
W46	Terminal $\left[\mathrm{FMA}^{* 3}\right]$ Output Voltage	[3]	Y	Y	Y	Y	Y
W47	Terminal $\left[\mathrm{FMP}^{* 3}\right]$ Output Voltage	[3]	N	Y	N	Y	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.
*3 As for $F R N \square \square G 1 \square-\square A, E$ and U the terminal name changes from FMA to FM1and FMP to FM2 respectively.

Table 5.33 List of data format numbers (W codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
W48*4	Terminal [FMP] Output Frequency	[1]	N	Y	Y	Y	Y
W49	Terminal [V2] Input Voltage	[4]	N	Y	Y	Y	Y
W50	Terminal [FMA ${ }^{* 3}$] Output Current	[3]	N	Y	N	Y	Y
W51	Situation of Input Terminals on DIO Option	[1]	N	N	Y	N	N
		[77]	N	N	N	Y	Y
W52	Situation of Output Terminals on DIO Option	[1]	N	N	Y	N	N
		[78]	N	N	N	Y	Y
W53	Pulse Input (Master - side A/B phase) (Master - side Z phase) (Slave - side A/B phase) (Slave - side Z phase)	[6]	N	N	Y	Y	Y
W54		[1]	N	N	Y	Y	Y
W55		[6]	N	N	Y	Y	Y
W56		[1]	N	N	Y	Y	Y
W57	Current Position Pulse $\begin{aligned} & \text { (Upper column) } \\ & \text { (Lower column) }\end{aligned}$	[73]	N	N	Y	Y	Y
W58		[1]	N	N	Y	Y	Y
W59	Stop Position Pulse $\begin{array}{ll}\text { (Upper column) } \\ \text { (Lower column) }\end{array}$	[73]	N	N	Y	Y	Y
W60		[1]	N	N	Y	Y	Y
W61	$\begin{array}{ll}\text { Difference Pulse of Position } & \text { (Upper column) } \\ \text { (Lower column) }\end{array}$	[73]	N	N	Y	Y	Y
W62		[1]	N	N	Y	Y	Y
W63	Positioning Status	[1]	N	N	Y	Y	Y
W64	Difference Pulse of Servo Lock Control	[2]	N	N	N	N	Y
W65	Terminal [FMI] Output Current	[3]	N	$\mathrm{Y}^{* 2}$	N	N	N
	Terminal [FM2] Output Current	[3]	N	N	N	$\mathrm{Y}^{* 4}$	N
	Terminal [FMA2] Output Current	[3]	N	N	N	N	$\mathrm{Y}^{* 4}$
W66	Difference Pulse of Synchronous Operation	[4]	N	N	N	Y	Y
W67	Cumulative Run Time of Capacitors on Printed Circuit Boards	[74]	Y	Y	Y	Y	Y
W68	Cumulative Run Time of Cooling Fan	[74]	Y	Y	Y	Y	Y
W69	Surface Speed Monitor	[37]	N	N	N	N	Y
W70	Cumulative Operation Time	[1]	Y	Y	Y	Y	Y
W71	DC link Circuit Voltage	[1]	Y	Y	Y	Y	Y
W72	Internal Air Highest Temperature	[1]	N	Y	N	Y	Y
W73	Heat Sink Maximum Temperature	[1]	Y	Y	Y	Y	Y
W74	Maximum Effective Current Value	[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24] (BUS) ${ }^{\text {* }}$	N	Y	Y	Y	Y
W75	Main Circuit Capacitor's Capacitor	[3]	Y	Y	Y	Y	Y
W76	Cumulative Ope. Time of Capacitor on PC Board	[1]	Y	Y	Y	Y	N
W77	Cumulative Ope. Time of Cooling Fan	[1]	Y	Y	Y	Y	N
W78	Number of Startups	[1]	Y	Y	Y	Y	Y
W79	Cumulative Ope. Time of Motor Driving	[1]	Y	Y	Y	N	N
W80	Standard Fan Life	[1]	N	Y	N	N	N
W81	Integrating Electric Power	[45]	Y	Y	Y	N	Y
		[93]	N	N	N	Y	N
W82	Data Used Integrating Electric Power	[45]	Y	Y	Y	Y	Y
W83	Number of RS-485 Ch1 Errors	[1]	Y	Y	Y	Y	Y
W84	Contents of RS-485 Ch1 Error	[20]	Y	Y	Y	Y	Y
W85	Number of RS-485 Ch2 Errors	[1]	N	Y	Y	Y	Y
W86	Number of Option Errors 2	[1]	N	N	N	N	Y

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.
*2 Applicable only with $F R N \square \square F 1 \square-\square A, E$ and U
*3 As for $\operatorname{FRN} \quad \square G 1 \square-\square A, E$ and U the terminal name changes from FMA to FM1and FMP to FM2 respectively.
*4 Not applicable with FRNaロG1ם-םA, E and U.

Table 5.33 List of data format numbers (W codes) (Continued)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
W87	Inverter's ROM Version	[35]	Y	Y	Y	Y	Y
W88	Inverter`s ROM Version (CPU2)	[35]	N	N	N	Y	N
W89	Remote Keypad's ROM Version	[35]	Y	Y	Y	Y	Y
W90	Option 1 ROM Version	[35]	N	Y	Y	Y	Y
W91	Option 2 ROM Version	[35]	N	N	N	N	Y
W92	Option 3 ROM Version	[35]	N	N	N	N	Y
W94	Contents of RS-485 Ch2 Error	[20]	N	Y	Y	Y	Y
W95	Number of Option Errors 1	[1]	N	Y	Y	Y	Y
W96	Option Error Factor 1	[1]	N	Y	Y	Y	Y
W97	Option Error Factor 2	[1]	N	N	N	N	Y
W98	Number of Option Errors 3	[1]	N	N	N	N	Y
W99	Option Error Factor 3	[1]	N	N	N	N	Y

Table 5.34 List of data format numbers (X codes)

Code	Name	Format number	Support				
			Mini	Eco	Multi	Ace	MEGA
X00	Alarm History / The No. of The Serial Occurrences of an Identical Alarm	[41]	Y	Y	Y	Y	Y
X01	Multiple Alarm1 (Latest)	[40]	Y	Y	Y	Y	Y
X02	Multiple Alarm2 (Latest)	[40]	Y	Y	Y	Y	Y
X03	Sub Code (Latest)	[1]	Y	Y	Y	Y	Y
X04	Multiple Alarm Sub Code (Latest)	[1]	N	N	N	Y	N
X05	Alarm History / The No. of The Serial Occurrences of an Identical Alarm	[41]	Y	Y	Y	Y	Y
X06	Multiple Alarm1 (Last)	[40]	Y	Y	Y	Y	Y
X07	Multiple Alarm2 (Last)	[40]	Y	Y	Y	Y	Y
X08	Sub Code (Last)	[1]	Y	Y	Y	Y	Y
X09	Multiple Alarm Sub Code (Last)	[1]	N	N	N	Y	N
X10	Alarm History / The No. of The Serial Occurrences of an Identical Alarm	[41]	Y	Y	Y	Y	Y
X11	Multiple Alarm1 (2nd last)	[40]	Y	Y	Y	Y	Y
X12	Multiple Alarm2 (2nd last)	[40]	Y	Y	Y	Y	Y
X13	Sub Code (2nd last)	[1]	Y	Y	Y	Y	Y
X14	Multiple Alarm Sub Code (2nd last)	[1]	N	N	N	Y	N
X15	Alarm History / The No. of The Serial Occurrences of an Identical Alarm (3rd last)	[41]	Y	Y	Y	Y	Y
X16	Multiple Alarm1 (3rd last)	[40]	Y	Y	Y	Y	Y
X17	Multiple Alarm2 (3rd last)	[40]	Y	Y	Y	Y	Y
X18	Sub Code (3rd last)	[1]	Y	Y	Y	Y	Y
X19	Multiple Alarm Sub Code (3rd last)	[1]	N	N	N	Y	N
X20	Latest Info. on Alarm	[22]	Y	Y	Y	Y	Y
X21		[24] (FGI)	Y	Y	Y	Y	Y
		[19] (RTU)	Y	Y	Y	Y	Y
		[24] (BUS) ${ }^{\text {* }}$	N	Y	Y	Y	Y
X22		[1]	Y	Y	Y	Y	Y
X23		[2]	Y	Y	Y	Y	Y
X24		[22]	Y	Y	Y	Y	Y
X25		[16]	Y	Y	Y	Y	Y
X26		[1]	Y	Y	Y	Y	Y
X27		[1]	Y	Y	Y	Y	Y
X28		[1]	Y	Y	Y	Y	Y
X29		[1]	N	Y	N	Y	Y
X30		[1]	Y	Y	Y	Y	Y
X31		[43]	Y	Y	Y	Y	Y
X32		[15]	Y	Y	Y	Y	Y
X33		[14]	Y	Y	Y	Y	Y
X34		[15]	Y	Y	Y	Y	Y
X35		[24]	Y	Y	Y	Y	Y
X36		[76]	Y	N	N	Y	Y
X37		[29]	N	N	N	Y	Y
X38		[44]	Y	N	N	Y	N

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.34 List of data format numbers (X codes) (Continued)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
X60	Last Info. on Alarm	(Output frequency)		[22]	Y	Y	Y	Y	Y
X61		(Output current)	[24] (FGI)	Y	Y	Y	Y	Y	
			[19] (RTU)	Y	Y	Y	Y	Y	
			[24] (BUS) ${ }^{1}$	N	Y	Y	Y	Y	
X62		(Output voltage)	[1]	Y	Y	Y	Y	Y	
X63			[2]	Y	Y	Y	Y	Y	
X64		(Set frequency)	[22]	Y	Y	Y	Y	Y	
X65			[16]	Y	Y	Y	Y	Y	
X66			[1]	Y	Y	Y	Y	Y	
X67		(Cumulative ope. time) (Number of startups)	[1]	Y	Y	Y	Y	Y	
X68		(DC link circuit voltage)	[1]	Y	Y	Y	Y	Y	
X69		(Internal air temperature)	[1]	N	Y	N	Y	Y	
X70		(Heat sink temperature)	[1]	Y	Y	Y	Y	Y	
X71		(Input terminal) (Output terminal)	[43]	Y	Y	Y	Y	Y	
X72			[15]	Y	Y	Y	Y	Y	
X73		(Input terminal(com.))	[14]	Y	Y	Y	Y	Y	
X74		(Output terminal(com.))	[15]	Y	Y	Y	Y	Y	
X76		(Running status 2)	[76]	Y	N	N	Y	Y	
X77		(Speed detection) (Running status 3)	[29]	N	N	N	Y	Y	
X78			[44]	Y	N	N	Y	N	
X89	Customizable Logic	(Digital input-output) (Timer monitor) (Analog input 1) (Analog input 2) (Analog output)	[95]	N	N	N	Y	N	
X90			[5]	N	N	N	Y	Y	
X91			[12]	N	N	N	Y	N	
X92			[12]	N	N	N	Y	N	
X93			[12]	N	N	N	Y	N	
X94	Relay Out Put Data		[91]	N	N	N	Y	N	
X97	Terminal [PTC] Input Voltage		[4]	N	N	N	Y	N	

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.35 List of data format numbers (Z codes)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
Z00	Info. on Alarm (2nd last)	(Output frequency)		[22]	Y	Y	Y	Y	Y
Z01		(Output current)	[24] (FGI)	Y	Y	Y	Y	Y	
			[19] (RTU)	Y	Y	Y	Y	Y	
			[24] (BUS) ${ }^{\text {*1 }}$	N	Y	Y	Y	Y	
Z02		(Output voltage) (Torque)	[1]	Y	Y	Y	Y	Y	
Z03			[2]	Y	Y	Y	Y	Y	
Z04		(Set frequency)	[22]	Y	Y	Y	Y	Y	
Z05		(Running status) (Cumulative ope. time)	[16]	Y	Y	Y	Y	Y	
Z06			[1]	Y	Y	Y	Y	Y	
Z07		(Number of startups)	[1]	Y	Y	Y	Y	Y	
Z08		(DC link circuit voltage)	[1]	Y	Y	Y	Y	Y	
Z09		(Internal air temperature)	[1]	N	Y	N	Y	Y	
Z10		(Heat sink temperature)	[1]	Y	Y	Y	Y	Y	
Z11		(Input terminal)	[43]	Y	Y	Y	Y	Y	
Z12		(Output terminal)	[15]	Y	Y	Y	Y	Y	
Z13		(Input terminal(com.)) (Output terminal(com.))	[14]	Y	Y	Y	Y	Y	
Z14			[15]	Y	Y	Y	Y	Y	
Z16		(Running status 2)	[76]	Y	N	N	Y	Y	
Z17		(Speed detection)	[29]	N	N	N	Y	Y	
Z18		(Running status 3)	[44]	Y	N	N	Y	N	
Z40	Cumulative Run Time of Motor	1234	[74]	Y	N	N	Y	Y	
Z41			[74]	Y	N	N	Y	Y	
Z42			[74]	N	N	N	N	Y	
Z43			[74]	N	N	N	N	Y	
Z44	Number of Startups $\begin{array}{r}2 \\ 3 \\ 4\end{array}$		[1]	Y	N	N	Y	Y	
Z45			[1]	N	N	N	N	Y	
Z46			[1]	N	N	N	N	Y	
Z48	Retry History (Latest)		[41]	N	N	N	Y	N	
Z49	Retry History (Last)		[41]	N	N	N	Y	N	
Z50	Info. on Alarm (3rd last)	(Output frequency) (Output current)	[22]	Y	Y	Y	Y	Y	
Z51			[24] (FGI)	Y	Y	Y	Y	Y	
			[19] (RTU)	Y	Y	Y	Y	Y	
			[24] (BUS) ${ }^{\text {-1 }}$	N	Y	Y	Y	Y	
Z52			[1]	Y	Y	Y	Y	Y	
Z53		(Output voltage) (Torque)	[2]	Y	Y	Y	Y	Y	
Z54		(Set frequency)	[22]	Y	Y	Y	Y	Y	
Z55		(Running status) (Cumulative ope. time)	[16]	Y	Y	Y	Y	Y	
Z56			[1]	Y	Y	Y	Y	Y	
Z57		(Cumulative ope. time) (Number of startups)	[1]	Y	Y	Y	Y	Y	
Z58		(DC link circuit voltage)	[1]	Y	Y	Y	Y	Y	
Z59		(Internal air temperature)	[1]	N	Y	N	Y	Y	
Z60		(Heat sink temperature)	[1]	Y	Y	Y	Y	Y	
Z61		(Input terminal) (Output terminal)	[43]	Y	Y	Y	Y	Y	
Z62			[15]	Y	Y	Y	Y	Y	
Z63		(Output terminal) (Input terminal(com.))	[14]	Y	Y	Y	Y	Y	
Z64		(Output terminal(com.))	[15]	Y	Y	Y	Y	Y	
Z66		(Running status 2)	[76]	Y	N	N	Y	Y	
Z67		(Speed detection)	[29]	N	N	N	Y	Y	
Z68		(Running status 3)	[44]	Y	N	N	Y	N	

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

Table 5.35 List of data format numbers (Z codes) (Continued)

Code	Name		Format number	Support					
			Mini	Eco	Multi	Ace	MEGA		
Z78	Reserved			[2]	N	N	N	Y	N
Z79			[2]	N	N	N	Y	N	
Z80	Speed Detection		[2]	N	N	N	Y	Y	
Z81	Torque Real Value		[6]	N	N	N	Y	Y	
Z82	Load Factor		[6]	N	N	N	Y	Y	
Z83	Motor Output		[6]	N	N	N	Y	Y	
Z84	Output Current		[24] (FGI)	Y	N	N	Y	Y	
			[19] (RTU)	Y	N	N	Y	Y	
			[24] (BUS) ${ }^{-1}$	N	N	N	Y	Y	
Z85	PID Feedback Value		[12]	Y	N	N	Y	Y	
Z86	Input Power		[24]	Y	N	N	Y	Y	
Z87	PID Output		[4]	Y	N	N	Y	Y	
Z88	Integrating Electric Power		[45]	Y	N	N	N	Y	
			[93]	N	N	N	Y	N	
Z89	Control Circuit Terminal	(Input,EN2-terminal)	[43]	N	N	N	N	Y	
Z90	Current Position Pulse	(Upper column)	[73]	N	N	N	Y	Y	
Z91		(Lower column)	[1]	N	N	N	Y	Y	
Z92	Stop Position Pulse	(Upper column)	[73]	N	N	N	Y	Y	
Z93		(Lower column)	[1]	N	N	N	Y	Y	
Z94	Difference Pulse of Position	(Upper column)	[73]	N	N	N	Y	Y	
Z95		(Lower column)	[1]	N	N	N	Y	Y	

*1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

5.2.2 Data format specifications

The data in the data fields of a communications frame are 16 bits long, binary data, as shown below.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 16-bit binary data | | | | | | | | | | | |

For the convenience of description, 16-bit data is expressed in hexadecimal with one upper-order byte (eight bits from 15 to 8) and one lower-order byte (eight bits from 7 to 0).

For example, the following data is 1234 H in hexadecimal and expressed as \square | 12_{H} | 34_{H} |
| :--- | :--- |

0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0

Data format [1] Integer data (positive): Minimum step 1
(Example) When F05 (base) frequency voltage $=200 \mathrm{~V}$
$200=00 \mathrm{C} 8_{\mathrm{H}}$ Consequently $\quad \Rightarrow \quad 000_{\mathrm{H}} \quad \mathrm{C} 8_{\mathrm{H}}$

Data format [2] Integer data (positive/negative): Minimum step 1
(Example) When the value is -20
-20 $=$ FFEC $_{H}$ Consequently,
$\Rightarrow \quad \mathrm{FF}_{\mathrm{H}} \quad \mathrm{EC}_{\mathrm{H}} \mathrm{l}$

Data format [3] Decimal data (positive): Minimum step 0.1
(Example) When F17 (gain frequency set signal) $=100.0 \%$ $100.0 \times 10=1000=03 E 8_{\mathrm{H}} \quad$ Consequently,

$\Rightarrow \quad$| 03_{H} | E_{H} |
| :--- | :--- |

Data format [4] Decimal data (positive/negative): Minimum step 0.1
(Example) When C31 (analog input offset adjustment) $=-5.0 \%$

$-5.0 \times 10=-50=$ FFCE $_{H} \quad$ Consequently, $\quad \Rightarrow \quad$| F_{H} | CE_{H} |
| :--- | :--- |

Data format [5] Decimal data (positive): Minimum step 0.01
(Example) C 05 (multistep frequency) $=50.25 \mathrm{~Hz} \quad($ Mini,Eco,Multi)
$50.25 \times 100=5025=13 \mathrm{~A} 1_{\mathrm{H}} \quad$ Consequently, $\quad \Rightarrow$

Data format [6] Decimal data (positive/negative): Minimum step 0.01
(Example) When M07 (actual torque value) $=-85.38 \%$
$-85.38 \times 100=-8538=$ DEA $_{H} \quad$ Consequently,
\Rightarrow

Data format［7］Decimal data（positive）：Minimum step 0.001
（Example）When F51（ electronic thermal（permissible loss））$=0.105 \mathrm{~kW}$
$0.105 \times 1000=105=0069_{\mathrm{H}}$ Consequently，$\quad \Rightarrow \quad 000_{\mathrm{H}} 6^{69} \mathrm{H}$

Data format［8］Decimal data（positive／negative）：Minimum step 0.001
（Example）When the data is -1.234

$$
-1.234 \times 1000=-1234=\text { FB2E }_{H} \quad \text { Consequently, } \quad \Rightarrow \quad \begin{array}{|l|l|}
\hline \mathrm{FB}_{H} & 2 \mathrm{E}_{H} \\
\hline
\end{array}
$$

Data format［10］Alarm codes
Table 5．36 List of alarm codes

Code	Description	LED
0	No alarm	－－－
1	Overcurrent（during acceleration）	\％ill
2	Overcurrent（during deceleration）	（11）－7
3	Overcurrent（during constant speed operation）	（17）
5	Ground fault	E，
6	Overvoltage（during acceleration）	［17\％＇！
7	Overvoltage（during deceleration）	，171127
8	Overvoltage（during constant speed operation or stopping）	！\％17\％
10	Under voltage	1，＇
11	Input phase loss	1117
14	Fuse blown	にじい
16	Charging circuit fault	－111）
17	Heat sink overheat	［17\％＇！
18	External alarm	［17112］
19	Internal air overheat	－1111
20	Motor protection（PTC／NTC thermistor ）	
22	Braking resistor overheat	ロ゙いいで，
23	Motor overload	［ill
24	Motor overload：motor 2	［17，
25	Inverter overload	Lilli＇
27	Over speed protection	速
28	PG disconnection	バーフ
29	NTC disconnection error	－11－L
31	Memory error	E－i
32	Keypad communications error	Er－7
33	CPU error	Er－
34	Option communications error	E，
35	Option error	E－S
36	Run operation error	Eーに
37	Tuning error	E－7
38	RS－485 communications error（communications port1）	
42	Step－out detection	Eーロ゙
43	Motor selecting error	Er－1
44	Motor overload：motor 3	\％ill 7
45	Motor overload：motor 4	淮
46	Output phase loss	，
47	Following error，excessive speed deviation	
50	Position of magnetic pole error	E－I
51	Data save error on insufficient voltage	E－İ
53	RS－485 communications error（Option／Communications port 2）	Eーバ
54	Hardware error	Eーイ゙ー
55	CAN communications failure	にー！
56	Positioning control error	にーロ
57	EN circuit error	ELİ

Table 5．36 List of alarm codes（Continued）

Code	Description	LED
58	PID feedback disconnection detected	－1－1／
59	DB transistor trouble	ニロIINT
65	Customizable logic failure	Eして
66	PID control 1 feedback error detection	$1 \square_{L \prime \prime \prime}^{\prime \prime \prime}!$
67	PID control 2 feedback error detection	，
68	USB port transmittion error	$\stackrel{\square}{\square-1}$
70	Charging resistor overheat	－
81	Drought protection	，－1，
82	Control of maximum starts per hour	ーロル
83	End of curve protection	
84	Anti jam	－1吅
85	Filter clogging error	たロル
91	External PID control 1 feedback error detection	，
92	External PID control 2 feedback error detection	，－－－M M
93	External PID control 3 feedback error detection	，FININ－
100	DC fan lock detected	KTM
101	Motor overload warning	［ill
102	Cooling fin overheat warning	－117－
103	Life warning	$\stackrel{11}{1 /}$
104	Command loss	－İ
105	PID warning output	$1 \square^{17}$
106	Low torque detected	$\stackrel{\prime \prime \prime}{1 \prime \prime}$
107	Thermistor detected（PTC）	
108	Machine life（accumulated operation hours）	－1゙に
109	Machine life（No．of starting times）	L－IT
166	PID control 1 warning output	，－17\％！
167	PID control 2 warning output	ハーイップ
190	Mutual operation slave inverter alarm	言高
191	External PID control 1 warning output	－
192	External PID control 2 warning output	
193	External PID control 3 warning output	，
252	Forced operation	！－－Mal
253	Password protection	
254	Simulated error	E－－

$$
6=0006_{\mathrm{H}} \quad \text { Consequently, }
$$

00_{H}	$0^{-} \mathrm{H}$

Data format [11] Capacity code (unit: kW)
As shown in the table below, the capacity (kW) is multiplied by 100.
Table 5.37 Capacities and data

Capacity (kW)	Data	Capacity (kW)	Data	Capacity (kW)	Data
0.06	6	22	2200	280	28000
0.1	10	30	3000	315	31500
0.2	20	37	3700	355	35500
0.4	40	45	4500	400	40000
0.75	75	55	5500	450	45000
1.5	150	75	7500	500	50000
2.2	220	90	9000	550	55000
3.7	370	110	11000	600	60000
5.5	550	132	13200	650	60650
7.5	750	160	16000	700	60700
11	1100	200	20000	750	60750
15	1500	220	22000	800	60800
18.5	1850	250	25000	1000	61000

(Example) When the capacity is 2.2 kW
$2.20 \times 100=220=00 \mathrm{DC}_{\mathrm{H}} \quad$ Consequently,
$\Rightarrow \quad 00_{\mathrm{H}} \quad \mathrm{DC}_{\mathrm{H}}$

Data format [12] Floating point data (accel./decal. time, PID display coefficient)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Polarity | 0 | 0 | 0 | Exponent | | | | | | | | | | | |

Polarity: $0 \rightarrow$ Positive (+), $1 \rightarrow$ Negative (-) Exponent: 0 to 3 Mantissa: 1 to 999
Value expressed in this form $=($ polarity $)$ Mantissa $\times($ Exponent -2$)$ power of 10

Value	Mantissa	Exponent	(Exponent - 2) power of 10
0.01 to 9.99	1 to 999	0	0.01
10.0 to 99.9	100 to 999	1	0.1
100 to 999	100 to 999	2	1
1000 to 9990	100 to 999	3	10

(Example) When F07 (acceleration time 1) $=20.0$ seconds

$$
20.0=200 \times 0.1 \Rightarrow 0000010011001000_{\mathrm{b}}=\begin{gathered}
04 \mathrm{C} 8_{\mathrm{H}} \\
\text { Consequently, }
\end{gathered} \quad \Rightarrow \quad \begin{array}{|c|c|}
\hline 04_{\mathrm{H}} & \mathrm{C} 8_{\mathrm{H}} \\
\hline
\end{array}
$$

Data format [14] Operation command

15	14	13	12	11	10	9	8	7	6	5	4	3	2	10	
RST	$\begin{gathered} \mathrm{XR} \\ (\mathrm{REV}) \end{gathered}$	$\begin{gathered} \text { XF } \\ \text { (FWD) } \end{gathered}$	0	EN	X9	X8	X7	X6	X5	X4	X3	X2	X1	REV	FWD
	General-purpose input		Unused	EN terminal	General-purpose input									FWD: Forward command	

Alarm reset
(All bits are turned ON when set to 1.)
(Example) When S06 (operation command) = FWD, X1 = ON $0000000000000101_{\mathrm{b}}=0005_{\mathrm{H}}$ Consequently,
$\Rightarrow \quad 00_{\mathrm{H}} \quad 0^{05} \mathrm{H}$

Data format [15] General-purpose output terminal

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Y3A	Y2A	Y1A	0	0	0	30	0	0	0	Y5	Y4	Y3	Y2	Y1
Unused	Relay option output (Eco only)			Unused			\uparrow	Unused			General-purpose output				

Alarm (general-purpose output)
(All bits are turned ON when set to 1.)
(Example) When M15 (general-purpose output terminal) $=\mathrm{Y} 1=\mathrm{ON}$
$0000000000000001_{\mathrm{b}}=0001_{\mathrm{H}}$ Consequently, $\quad \Rightarrow$

00_{H}	$0^{\prime}{ }_{\mathrm{H}}$

Data format [16] Operation status

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUSY | 0 | 0 | RL | ALM | DEC | ACC | IL | VL | 0 | NUV | BRK | INT | EXT | REV | FWD |

(All bits are turned ON or become active when set to 1.)

Bit	Symbol	Description	Support					Bit	Symbol	Description	Support				
			Mini	Eco	Multi	Ace	MEGA				Mini	Eco	Multi	Ace	MEGA
0	FWD	During forward rotation	Y	Y	Y	Y	Y	8	IL	During current limiting	Y	Y	Y	Y	Y
1	REV	During reverse rotation	Y	Y	Y	Y	Y	9	ACC	During acceleration	Y	Y	Y	Y	Y
2	EXT	During DC braking (or during pre-exciting)	Y	Y	Y	Y	Y	10	DEC	During deceleration	Y	Y	Y	Y	Y
3	INT	Inverter shut down	Y	Y	Y	Y	Y	11	ALM	Alarm relay (for any fault)	Y	Y	Y	Y	Y
4	BRK	During braking (fixed to 0 for FRENIC-Mini)	N	Y	Y	Y	Y	12	RL	Communicati ons effective	Y	Y	Y	Y	Y
5	NUV	DC link circuit voltage established (0 = undervoltage)	Y	Y	Y	Y	Y	13	0	-	N	N	N	N	N
6	TL	During torque limiting	N	N	Y	Y	Y	14	0	-	N	N	N	N	N
7	VL	During voltage limiting	Y	Y	Y	Y	Y	15	BUSY	During function code data writing	Y	Y	Y	Y	Y

Data format [17] Model code

15	14	13	12	11	10	9	8	7	6	5	4	3	2

Table 5.38 List of model codes

Code	1	2	3	4	5	6	7	8	9	A	B	C	D	E
Model	VG	G	$\begin{gathered} \hline \mathrm{P} \\ \mathrm{AR} \end{gathered}$	E	C	S	$\begin{gathered} \hline \text { DPS } \\ \text { GX } \end{gathered}$	$\begin{gathered} \hline \text { DGS } \\ \text { AQ } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (1667 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (3000 \mathrm{~Hz}) \end{gathered}$	F	RHC	RHR	Lift
Generation	11 series	7 series	1 series RHR A series RHC C series	$\begin{gathered} \text { Eco } \\ \text { PLUS } \end{gathered}$ series	2 series									
Destination	Japan (standard)	Asia	China	Europe	USA	Taiwan								
Input power supply	Singlephase 100 V	Singlephase 200 V	Threephase 200 V	Threephase 400 V	Threephase 575 V									

(Example) When the inverter type is FRN1.5C $2 \mathrm{~S}-2 \mathrm{~J}$
$\left[\begin{array}{ll} & \text { Japan } \\ \text { Input power supply: } & \text { 3-phase 200V } \\ \text { Structure: } & \text { Standard } \\ \text { Generation: } & 2 \text { series } \\ \text { Model: } & \text { C }\end{array}\right.$

Since "model ":C is represented by code 5 , "generation": 2 series by code 5 , "destination": Japan (standard) by 1 , and "input power supply": 3 -phase 200 V by 3 , the model code is 5513_{H}.

Data format [19] Current value

Current values are decimal data (positive). The minimum step is 0.01 for an inverter capacity of 22 kW (30HP) or less and 0.1 for an inverter capacity of 30 kW (40HP) or more.

When inverter capacity is 22 kW (30 HP) or less, any data higher than 655 A cannot be written. No correct value can be read out when a direction for write data higher than 655A is issued.

Current data is rounded down on and after the fifth digit inside the inverter. (Ex.: When a writing direction of 107.54 A is issued to an inverter with a capacity of 22 kW (30HP), 107.5 A is written.)
(Ex.) When F11 (electronic thermal operation level) $=107.0 \mathrm{~A}(40 \mathrm{HP})$
$107.0 \times 10=1070=042 \mathrm{E}_{\mathrm{H}}$, consequently

(Ex.) When F11 (electronic thermal operation level) $=3.60 \mathrm{~A}(1 \mathrm{HP})$
$3.60 \times 10=360=0168_{\mathrm{H}}$, consequently \Rightarrow

Data format [20] Communications error
Table 5.39 Communications error codes (common to both protocols)

Code	Description	Code	Description
71	Checksum error, CRC error \Rightarrow No response	73	Framing error, overrun error, buffer full \Rightarrow No response
72	Parity error $\quad \Rightarrow$ No response		

Table 5.40 Communications error codes (for Fuji general-purpose inverter protocol)

Code	Description	Code	Description
74	Format error	78	Function code error
75	Command error	79	Write disabled
76	Link priority error	80	Data error
77	Function code data write right error	81	Error during writing

Table 5.41 Communications error codes (for RTU protocol)

Code	Description	Code	Description
1	Improper 'FC'	3	Improper data (range error)
2	Improper address (function code error)	7	NAK (link priority, no right, write disabled)

(Example) In case of an improper address

$$
2=0002_{\mathrm{H}} \quad \text { Consequently, }
$$

$$
\Rightarrow \quad \begin{array}{|l|l|}
\hline 00_{\mathrm{H}} & 0^{2} \mathrm{H} \\
\hline
\end{array}
$$

Data format [21] Auto tuning

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | REV | FWD | | | | | | | | |

When FWD is 1 , this data is the forward rotation command. When REV is 1 , this data is the reverse rotation command. However, if both FWD and REV are 1, the command is not effective. Both FWD and REV are 0 for reading.
(Ex.) When P04 (motor 1 automatic tuning) $=1$ (forward rotation),

$$
0000000100000001_{\mathrm{b}}=0101_{\mathrm{H}} \text { Consequently, } \quad \Rightarrow \quad \begin{array}{|l|l|}
\hline 01_{\mathrm{H}} & 01_{\mathrm{H}} \\
\hline
\end{array}
$$

Data format [22] Frequency data

Decimal data (positive): Resolution 0.01 Hz
(Ex.) When C05 (multistep frequency 1) $=50.25 \mathrm{~Hz}$ (MEGA)

$$
50.25 \times 100=5025=13 \mathrm{~A} 1_{\mathrm{H}}, \text { consequently }
$$

\Rightarrow

13_{H}	A_{H}

Data format [23] Polarity + decimal data (positive)
(for Fuji general-purpose inverter protocol)
Decimal data (positive): Resolution 0.01 Hz

For reverse rotation, add a negative sign (-) (ASCII) to the special additional data in the standard frame, or for forward rotation, enter a space (ASCII).
(Example) When maximum frequency $=60 \mathrm{~Hz}$ and M09 (output frequency) $=60.00 \mathrm{~Hz}$ (forward rotation)

$$
60.00 \times 100=6000=1770_{\mathrm{H}} \text { Consequently, } \Rightarrow \quad \begin{array}{|l|l|l|l|l|}
\hline & 1 & 7 & 7 & 0 \\
\hline
\end{array}
$$

(Positive data is in the same data format as data format [5].)

Data format [24] Floating point data

Exponent: 0-3 Mantissa: 1 to 9999
The value expressed by this format $=$ the mantissa $\times 10^{(\text {exponent-2) }}$

Numeric value	Mantissa	Exponent	$10^{\text {(exponent-2) }}$
0.00 to 99.99	0 to 9999	0	0.01
100.0 to 999.9	1000 to 9999	1	0.1
1000 to 9999	1000 to 9999	2	1
10000 to 99990	1000 to 9999	3	10

Data format [25] Capacity code (for HP)
As shown in the table below, the capacity (HP) is multiplied by 100 .
Table 5.42 Capacities and data (for HP)

Code	Capacity (HP)	Code	Capacity (HP)	Code	Capacity (HP)
7	0.07 (reserved)	3000	30	40000	400
15	0.15 (reserved)	4000	40	45000	450
25	0.25	5000	50	50000	500
50	0.5	6000	60	60000	600
100	1	7500	75	60700	700
200	2	10000	100	60750	750
300	3	12500	125	60800	800
500	5	15000	150	60850	850
750	7.5	17500	175	60900	900
1000	10	20000	200	60950	950
1500	15	25000	250	61000	1000
2000	20	30000	300	61050	1050
2500	25	35000	350		

(Example) When the capacity is 3HP
$3 \times 100=300=012 \mathrm{C}_{\mathrm{H}} \quad$ Consequently,
$\Rightarrow \quad 01_{\mathrm{H}} \quad 2 \mathrm{C}_{\mathrm{H}}$

Data format [29] Positive/Negative data of values converted into standard (p.u.) with 20,000 (Example) Speed (frequency) Data of $\pm 20,000 / \pm$ maximum speed (frequency)

Data format [35] ROM version

Range: 0 to 9999

Data format [37] Floating point data (load rotation speed, etc.)

Exponent: 0-3 Mantissa: 1 to 9999
The value expressed by this format $=$ the mantissa $\times 10^{(\text {exponent-2) }}$

Numeric value	Mantissa	Exponent	$10^{\text {(exponent-2) }}$
0.01 to 99.99	1 to 9999	0	0.01
100.0 to 999.9	1000 to 9999	1	0.1
1000 to 9999	1000 to 9999	2	1
10000 to 99990	1000 to 9999	3	10

Data format [40] Alarm factor

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Alarm caused by multiple factors (1 to 5)				Order of alarm occurrences (1 to 5)						Alarm code (See Table 5.36.)					

Data format [41] Alarm history

Indicates the content of an alarm that has occurred and the number of serial occurrence times of the alarm.

Data format [43] Operation command (for I/O check)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	EN2	EN1	X9	X8	X7	X6	X5	X4	X3	X2	X1	REV	FWD
	nus		EN input		General-purpose input										

(All bits are turned ON when set to 1.)

Data format [44] Operation status 2

15	14	13	12	1											
0	ID2	IDL	ID	OLP	LIFE	OH	TRY	FAN	KP	OL	IPF	SWM2	RDY	FDT	FAR

(All bits are turned ON or become active when set to 1.)

Bit	Symbol	Description	Support					Bit	Symbol	Description	Support				
			Mini	Eco	Multi	Ace	MEGA				Mini	Eco	Multi	Ace	MEGA
0	FAR	Frequency arrival signal	Y	Y	Y	Y	Y	8	TRY	Retry in operation	Y	Y	Y	Y	Y
1	FDT	Frequency level detection	Y	Y	Y	Y	Y	9	OH	Heat sink overheat early warning	N	Y	Y	Y	Y
2	RDY	Inverter ready to run	N	Y	Y	Y	Y	10	LIFE	Lifetime alarm	Y	Y	Y	Y	Y
3	SWM2	2nd motor is selected	Y	N	Y	Y	Y	11	OLP	Overload prevention control	Y	Y	Y	Y	Y
4	IPF	Auto-restarting after recovery of power	Y	Y	Y	Y	Y	12	ID	Current detection	Y	Y	Y	Y	Y
5	OL	Motor overload early warning	Y	Y	Y	Y	Y	13	IDL	Low level current detection	Y	N	N	N	Y
6	KP	Running per keypad	N	N	N	N	Y	14	ID2	Current detection 2	Y	N	Y	Y	Y
7	FAN	Cooling fan in operation	N	Y	N	N	Y	15	0	-	N	N	N	N	N

Data format [45] Floating point data

Exponent: 0-3 Mantissa: 0 to 9999
The value expressed by this format $=$ the mantissa $\times 10^{(\text {exponent-3) }}$

Numeric value	Mantissa	Exponent	$10^{\text {(exponent-3) }}$
0.000 to 9.999	0 to 9999	0	0.001
10.0 to 99.9	1000 to 9999	1	0.01
100.0 to 999.9	1000 to 9999	2	0.1
1000 to 9999	1000 to 9999	3	1

Data format [67] Operation command source codes

Code	Description	Remarks
0	Keypad operation (Rotating direction: Depends on the terminal input)	
1	Terminal operation	
2	Keypad operation (CW)	
3	Keypad operation (CCW)	
4	Operation command 2	
5	Forced operation	
6 to 19	Reserved	
20	RS-485 channel1	
21	RS-485 channel2	
22	Bus option	
23	FRENIC Loader	

Data format [68]
Frequency command source codes

Code	Description	Remarks
0	Keypad key operation	
1	Voltage input (Terminal [12])	
2	Current input (Terminal [C1])	
3	Voltage input (Terminal [12]) + Current input (Terminal [C1])	
4	Inverter body volume	
5	Voltage input (Terminal [V2])	
7	UP/DOWN	
8	Keypad key operation (Balanceless, bumpless functions are activated.)	
11	Digital input (option)	
12	Pulse train input	
20	RS-485 channel1	
21	RS-485 channel2	
22	Bus option	
23	FENIC Loader	
24	Multi-step	
25	JOG	
$30^{* 1}$	PID TP	
$31^{* 1}$	PID analog 1	
$32{ }^{* 1}$	PID analog 2	
$33^{* 1}$	PID UP/DOWN	
$34^{* 1}$	PID communications command	
$36^{* 1}$	PID multi-step	
39	Forced operation	

*1 Under the PID dancer control, the inverter monitors the PID command source although the frequency command becomes effective as the main setting.

Data format [73] Integer data (positive/negative sign bit)
Resolution 1 (The high-order digit of position control data)

Data format [74] Integer data (positive): by 10 hours (Example) M81 (Maintenance remaining hours-M1) $=12340$ hours
$12340 \div 10=04 \mathrm{D} 2_{\mathrm{H}}$
Consequently
=>

04_{H}	$D 2_{H}$

Data format [75] Integer data (positive) + [P] Exception for position control
Based on the positive integer data, setting of " -1 " is permitted exceptionally. When "-1" is set on the touch probe or the loader, $[\mathrm{P}]$ is displayed.

Data format [76] Operating status 2

15	14	13	12	11	10	9	8	7	6	54	$3 \quad 2 \quad 10$
Motor classfi -cation	STO circuit check	Spare	Spare	Spare	Spare	Spare	Directi on limit ON	Speed limit ON	Spare	Select motor	Control method

(Spares are always set to "0.")

Signal name	Description	Mini	Eco	Multi	Ace	MEGA
Control method	The final control method including set values and terminal conditions are shown below. 0 : V/f control without slip compensation 1: Dynamic torque-vector control 2: V/f control with slip compensation 3: $\quad \mathrm{V} / \mathrm{f}$ control with speed sensor 4: Dynamic torque-vector control with speed sensor 5: Vector control without speed sensor 6: Vector control with speed sensor 10: Torque control (vector control without speed sensor) 11: Torque control (vector control with speed sensor) Other than the above: Reserved	Y	N	N	Y	Y
Motor selection	Selected motor is shown 00_{b} : Motor1 01 b : Motor2 10_{b} : Motor3 11b: Motor4	Y	N	N	Y	Y
Speed limit ON	" 1 " is set during speed limit.	N	N	N	Y	Y
Direction limit OM	" 1 " is set during direction limit.	Y	N	Y	Y	Y
Motor class-fication	0 : Induction motor 1: Synchronous motor	Y	N	N	Y	Y
STO circuit check	1: Check disable 1: Check	N	N	N	Y	N

Data format [77] Optional input terminals

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
116	115	114	113	112	111	110	19	18	17	16	15	14	13	12	11

Data format [78] Optional output terminals

15	14	13	12	11	10	9	8	4							
0	0	0	0	0	0	0	0	08	07	06	05	04	03	02	01

Unused

Data format [84] Paturn operation

(Example) C22 (Stage1) = Run time:10.0s, Rotation direction:Reverse, Acc/dec time: Time2
Rotation direction: Reverse: bit15=1
Acc/dec time: Time2: bit13=0, bit12=1
Exponent: 0.1: bit11=0, bit10=1
Run time data: 100: 64_{H}

$9000_{\mathrm{H}}+0400_{\mathrm{H}}+0064_{\mathrm{H}}=9464_{\mathrm{H}} \quad$ Consequently $\Rightarrow \quad$| 94_{H} | 64_{H} |
| :---: | :---: |

Data format [91] Relay output signals

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	Y12A	Y11A	Y10A	Y9A	Y8A	Y7A	Y6A	0	Y4A	Y3A	Y2A	Y1A

Data format [93] Floating point data

$15 \quad 14$	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Exponent	Mantissa													

Exponent: 0-3 Mantissa: 0 to 9999
The value expressed by this format $=$ the mantissa $\times 10^{(\text {exponent-1) }}$

Numeric value	Mantissa	Exponent	$10^{\text {(exponent-3) }}$
000.0 to 999.9	0 to 9999	0	0.1
1000 to 9999	1000 to 9999	1	1
10000 to 99990	1000 to 9999	2	10
100000 to 999900	1000 to 9999	3	100

Data format [95] Custmizable logic status

15	1413	$12 \quad 11$	109	$8 \quad 7$	65	43	2	1	0
$\begin{array}{\|c\|} \hline \text { Step } \\ \text { enable } \end{array}$	Reserve	Output species	Reserve	Input species2	Reserve	Input species2	Digital output	Digital input 2	Digital input 1

bit0	Digital input 1	$=0:$ OFF, $=1:$ ON
bit1	Digital input 2	$=0:$ OFF, $=1:$ ON
bit2	Digital output	$=0:$ OFF, =1: ON
bit3-4	Input species 1	$=0:$ No function assgined, =1: Digital, =2: Analog
bit7-8	Input species 2	$=0:$ No function assgined, =1: Digital, =2: Analog
bit11-12	Output species	$=0:$ No function assgined, =1: Digital, =2: Analog
bit15	Step enable	$=0:$ Disable, =1: Enable

MEMO

Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo, 141-0032, Japan
Phone: +81 354357058
Fax: +81 354357420
URL http://www.fujielectric.com/

[^0]: *1 BUS: The field bus option format is selected. For details about the field bus option, see the instruction manual for each field bus option.

