

Kurzanleitung FRENIC Lift

Umrichter für Aufzüge

3 ph 400 V 4.0 kW - 45 kW 3 ph 200 V 5.5 kW - 22 kW 1 ph 200 V 2.2 kW

Version	Änderungen	Datum	Geändert	Überprüft	Genehmigt
1.3.1	L56 zu "Optimierung der	15.07.2008	J. Català	J. Català	J. Català
	Fahreigenschaften" hinzugefügt. Bilder 8,9,10				
	und 11 geändert.				
1.3.2	Informationen zu Parameter F03 hinzugefügt. Spezifikationstabellen überarbeitet.	10.07.0000	I Català	I Cotolà	I Català
1.3.2	Bilder Seite 11, 12, 18, 19, 20 und 22	16.07.2008	J. Català	J. Català	J. Català
	überarbeitet.				
	Definition H67 überarbeitet (Seite 33).				
	Definition L56 überarbeitet (Seite 39).				
1.3.3	Bild 23 geändert.	16.07.2008	J. Alonso	D. Bedford	D. Bedford
	Tabelle 11 geändert.				
	Seite 39: Titel geändert, Text hinzugefügt				
	(Sanftanlauf für Installationen mit hoher				
	Haftreibung)				
	Alarmmeldungen geändert. Tabellennummern korrigiert.				
	Kleinere Korrekturen.				
1.4.0	Formel für Leerlaufstrom hinzugefügt.	25.11.2008	J. Alonso	D. Bedford	D. Bedford
	Tabelle 12 überarbeitet.	20.11.2000	0.7401100	B. Boarora	D. Bodioid
	Parameter L83 hinzugefügt.				
	Werte für F20 und F25 in 11.4 hinzugefügt				
	Kapitelnummern eingefügt.				
	Kleinere Korrekturen.				
1.5.0	ROM Versionen hinzugefügt.	25.01.2010	J. Alonso	D. Bedford	D. Bedford
	CE Erklärung überarbeitet. EN954-1 Cat 3 hinzugefügt.				
	2.2kW-7 hinzugefügt.				
	Spezifikationen und Überlastfähigkeit korr.				
	Bild 26 geändert.				
	Kleinere Korrekturen.				
1.6.0	ROM Version korrigiert.	24.12.2010	J. Alonso	D. Bedford	D. Bedford
	Parameter L07, H98 (bit2) und L99 (bit6)				
	eingefügt.				
	Kleinere Korrekturen.				
1.6.1	Spezifikationen überarbeitet Nummerierung der Bilder restrukturiert	28.02.2011	J. Alonso	D. Bedford	D. Bedford
1.0.1	Bild 4 modifiziert.	20.02.2011	J. AIUII30	D. Bedioid	D. Bedioid
	Kapitel 3.1 korrigiert.				
1.6.2	Information zu 15kHz Schaltfrequenz in	12.03.2011	J. Alonso	D. Bedford	D. Bedford
	Kapitel 3.3 hinzugefügt.				
	OPL Fehler in Kapitel 17 hinzugefügt.				
	Definition von F03 / F04 geändert in Kapitel				
	11.2 / 11.3 und 11.4.				
	Texte modifiziert.				
1.7.0	F09 hinzugefügt in Kapitel 11.4. EN1 und EN2 Klemmen hinzugefügt.	04.01.2012	J. Alonso	D. Bedford	D. Bedford
1.7.0	Sicherheitsstandards überarbeitet.	07.01.2012	0. AIUI13U	D. Dealoid	D. Dealord
	Fehler Bild 11 behoben.				
	Firmware Versionen überarbeitet.				
	ASR PI auf Bild 29 hinzugefügt.				
1.7.1	Werte in Tabelle 1 aktualisiert.	30.07.2012	J. Alonso	J. Català	J.Català
	Umbenennung der Geschwindigkeiten in				
	Tabelle 1 und 2.				
	Werte in Tabelle 12 aktualisiert. Einige Informationen in Kapitel 3 hinzugefügt				
	(Funktionale Sicherheit).				
	Bezeichnungen in Bild 23 aktualisiert.				
	Alarminformationen hinzugefügt.				
	Logo aktualisiert.				
1.8.0	Änderungen in L82, H04. L76 hinzugefügt.	20.05.2014	J. Alonso	J. Català	J. Català
	Text geändert in Kap. 3.1, 3.2 und 15				

Inhaltsverzeichnis

Thema	Seite
Über diese Beschreibung Sicherheitshinweise Konformität zu EU Standards	4 5 7
3. Technische Daten und Einsatzbereich 3.1 400 V Serie 3.2 200 V Serie (3ph und 1ph) 3.3 De-rating und Überlastbarkeit 400 V Serie	8 9 9
4. Entfernen und Anbringen der Frontabdeckung (5,5 bis 22 kW)	10
5. Anschlüsse 5.1 Leistungsanschlüsse 5.2 Steueranschlüsse 5.3 Zuordnung der Eingangsklemmen für Geschwindigkeitssollwerte 5.4 Beschreibung der Steuerklemmen a. Analoge Eingänge b. Digitaleingänge c. Relaisausgänge d. Transistorausgänge e. Kommunikationsschnittstellen (Bedieneinheit, DCP 3, Laptop, CANopen)	11 12 12 13 13 13 14 14 14
6. Hardwarekonfiguration	15
7. Drehzahlgeber 7.1 Eingangsschaltung 12V/15V für Asynchronmotoren mit Getriebe 7.2 Optionskarte OPC-LM1-IL für Asynchronmotoren mit Getriebe 7.3 Optionskarte OPC-LM1-PS1 für Synchronmotoren mit ECN 1313 EnDat 2.1 7.4 Optionskarte OPC-LM1-PR für Synchronmotoren mit ERN 1387	17 18 19 20
8. Bedienung über abnehmbare Bedieneinheit 8.1 Übersicht und Erklärung der Bedientasten 8.2 Das Menü der Bedieneinheit	21 22
9. Signalfolge eines Fahrtablaufes mit Normalfahrt bei Nenngeschwindigkeit	24
10. Signalfolge der Eingänge bei Zwischengeschwindigkeiten	25
11. Einstellungen 11.1 Einleitung, schrittweises Vorgehen 11.2 Spezifische Einstellungen bei Asynchronmotoren (mit Encoder) 11.3 Spezifische Einstellungen bei Synchronmotoren 11.4 Spezifische Einstellungen bei Asynchronmotoren (Getriebemotoren ohne Encoder) 11.5 Zusätzliche Einstellungen für Asynchronmotoren ohne Encoder 11.6 Einstellung der Fahrkurve und dazu erforderliche Parameter 11.7 Richtwerte für Beschleunigungs- und Verzögerungseinstellungen	25 26 27 28 29 29 31
12 Parametertabellen	22
12.1 Optimierung der Fahreigenschaften12.2 Optimierung Anfahren und Anhalten12.3 Sonstige, je nach Anwendung benötigte Parameter12.4 Funktionseinstellungen der Ein- und Ausgangsklemmen12.5 Zuordnung der Bitweisen Parameter H98 und L99	32 33 33 34 34
13 Spezielle Betriebsarten	_
13.1 Spitzbogenfahrt 13.2 Direkteinfahrt 14 Lösen aus dem Fang 15 Evakuierungsbetrieb 16 Sanftanlauf für Installationen mit hoher Haftreibung	35 36 37 38 39
17 Fehlermeldungen	40

0. Über diese Beschreibung

Vielen Dank, dass Sie sich für einen FRENIC – Lift Frequenzumrichter entschieden haben.

- (a) Frequenzumrichter der FRENIC Lift Serie sind speziell zum Betrieb von Asynchron- und Synchronmotoren für Aufzuganwendungen entwickelt worden. Dabei können Asynchronmotoren auch ohne Drehzahlrückführung bei sehr guten Fahreigenschaften und hoher Haltegenauigkeit betrieben werden.
- (b) Einige FRENIC Lift Charakteristiken sind:
- Geringe Baugröße bei hoher Ausgangsleistung
- Evakuierungsbetrieb über Batterie mit Auswahl der bevorzugten Fahrtrichtung
- Spitzbogen Fahrt bzw. automatisch verlängerte Beschleunigungszeit bei Kurzhaltestellen
- Überlastkapazität 200% bis zu 10 Sekunden
- Kommunikationsprotokolle DCP3 oder CAN Open integriert
- Modbus RTU Protokoll ist als Standard integriert
- Inkrementalgeber Eingang (12V oder 15V / Open Collector)
- Optional Erweiterungskarten für verschiedene Drehzahlgeber möglich
- Pollageneinmessung und Autotuning ohne Abnehmen der Seile möglich
- Multifunktionale, abnehmbare Bedieneinheit
- Bremstransistor bei allen Gerätegrößen integriert
- Betrieb ohne Drehzahlgeber bei Asynchronmotoren möglich
 - (c) Diese Kurzanleitung beinhaltet die wichtigsten Informationen und Erklärungen zum Anschluss und zur Inbetriebnahme des FRENIC – Lift bei Aufzuganwendungen.
- & Eingänge und Ausgänge können per Parametereinstellung mit verschiedenen Funktionen belegt werden. Werksseitig sind diese bereits mit Funktionen für Aufzuganwendungen belegt. Nur diese Funktionen, also Aufzugfunktionen, sind in dieser Anleitung beschrieben.
- (Getriebemotoren). Kommen getriebelose Synchronmotoren zum Einsatz ist der entsprechende Parameter zur Konfiguration für Synchronmotoren umzustellen. Es ist jederzeit möglich alle Parameter wieder auf die Werkseinstellung zurück zu setzen. Erfolgt die Rückstellung bei Synchronmotoren nach Einmessung der Rotorlage, gehen die ermittelten Werte verloren. In diesem Fall, empfiehlt es sich den gemessenen OFFSET unter Parameter L04 abzuschreiben und den abgeschriebenen Zahlenwert später erneut einzugeben. So erspart man sich die erneute Prozedur zur Rotorlagenermittlung.
- & Nicht beschrieben werden spezielle Funktionen, die nur für Sonderanwendungen infrage kommen. Für Fragen dazu steht Ihnen unser Service jederzeit zur Verfügung.

Note Diese Kurzanleitung basiert auf ROM-Version 1950 und 1951 oder später. Für andere ROM-Versionen kontaktieren Sie bitte den Technischen Service von FUJI Electric.

1. Sicherheitshinweise

Lesen Sie dieses Handbuch sorgfältig durch, ehe Sie mit Installation, Anschlüssen (Verdrahtung), Bedienung oder Wartungs- und Inspektionsarbeiten beginnen. Machen Sie sich vor Inbetriebnahme des Umrichters mit dem Produkt und allen zugehörigen Sicherheitshinweisen und Vorsichtsmaßnahmen gründlich vertraut.

Die Sicherheitshinweise in diesem Handbuch sind in die folgenden beiden Kategorien unterteilt

△ WARNUNG	Nichtbeachtung der durch dieses Symbol gekennzeichneten Hinweise kann gefährliche Zustände hervorrufen, die zu schweren oder tödlichen Verletzungen führen können.
△ VORSICHT	Nichtbeachtung der durch dieses Symbol gekennzeichneten Hinweise kann gefährliche Zustände hervorrufen, die zu weniger schweren Verletzungen und/oder Sachschäden führen können.

Nichtbeachtung der mit VORSICHT markierten Hinweise kann auch zu schwerwiegenden Konsequenzen führen. Diese Sicherheitshinweise sind extrem wichtig und müssen jederzeit beachtet werden.

Anwendung

⚠ WARNUNG

- Der FRENIC-Lift ist zur Speisung von Dreiphasenmotoren ausgelegt. Verwenden Sie den Frequenzumrichter nicht für Einphasenmotoren oder andere Zwecke. Brand- oder Unfallgefahr!
- Obgleich der FRENIC-Lift Frequenzumrichter unter strengsten Qualitätskontrollen hergestellt wird, müssen zusätzliche Sicherheitseinrichtungen installiert werden, da ein Defekt des Frequenzumrichters zu schweren Unfällen oder wesentlichen Verlusten führen kann. Unfallgefahr!

Installation

⚠ WARNUNG

- Installieren Sie den Frequenzumrichter nur auf einem nicht brennbaren Material, wie zum Beispiel Metall. Brandgefahr!
- Achten Sie darauf, dass sich kein brennbares Material in der Nähe befindet. Brandgefahr!

⚠ VORSICHT

- Halten Sie den Umrichter beim Transport nicht an seiner Klemmenblockabdeckung.
- Der Umrichter könnte dadurch hinunterfallen. Verletzungsgefahr!
- Achten Sie darauf, dass weder Flusen noch Papierstaub, Sägemehl, Staub, Metallspäne oder andere Fremdmaterialien in den Frequenzumrichter gelangen oder sich am Kühlkörper ansammeln können. Brandgefahr! Unfallgefahr!
- Ein Gerät, das beschädigt ist oder an dem Teile fehlen, darf weder eingebaut noch in Betrieb genommen werden. Brandgefahr! Verletzungsgefahr! Unfallgefahr!
- Steigen Sie nicht auf die Transportverpackung. Verletzungsgefahr!
- Die Anzahl der Transportkisten, welche übereinander gestapelt werden können, ist auf der Verpackung angegeben und darf nicht überschritten werden. Verletzungsgefahr!

Verkabelung

$oldsymbol{\Lambda}$ WARNUNG

- Schließen Sie den Frequenzumrichter nur über einen kompakten Leistungsschalter oder einen Fehlerstromschutzschalter an das Netz an (gilt nicht für jene Geräte, die ausschließlich für den Erdschlussschutz konzipiert sind). Verwenden Sie die Geräte nur innerhalb des zugelassenen Stromstärkenbereichs. Brandgefahr!
- Verwenden Sie Kabel mit dem angegebenen Querschnitt. Brandgefahr!
- Verwenden Sie kein mehradriges Kabel, um mehrere Umrichter an verschiedenen Motoren anzuschließen. Brandgefahr!
- Schließen Sie keinen Überspannungsschutz am Sekundärkreis des Frequenzumrichters an. Brandgefahr!
- Achten Sie darauf, dass die Erdleiter korrekt angeschlossen sind. Brandgefahr! Stromschlaggefahr! Die Verdrahtungsarbeiten dürfen nur von entsprechend geschultem Fachpersonal ausgeführt werden. Stromschlaggefahr! Vergewissern Sie sich vor Beginn der Verdrahtungsarbeiten, dass die Netzspannung ausgeschaltet ist. Stromschlaggefahr!
- Der Frequenzumrichter muss entsprechend den nationalen und lokalen Sicherheitsvorschriften geerdet werden. Stromschlaggefahr! Verdrahten Sie den Frequenzumrichter erst, wenn die Montage fertig ausgeführt ist. Stromschlaggefahr! Verletzungsgefahr!
- Vergewissern Sie sich, dass die Zahl der Phasen und die Spannung des Netzes mit der des Frequenzumrichters übereinstimmen. Brandgefahr! Unfallgefahr!
- Schließen Sie die Netzspannung niemals an den Ausgangsklemmen (U, V, W) an. Brandgefahr!
- Schließen Sie keinen Bremswiderstand zwischen den Klemmen P (+) und N (-), P1 und N (-), P (+) und P1, DB und N (-) bzw. P1 und DB an. Brandgefahr! Unfallgefahr!
- Generell besitzen Steuersignalkabel keine verstärkten Isolationen. Sollten sie unbeabsichtigter weise andere stromführende Teile berühren, so könnte ihre Isolation brechen. Ist dies der Fall könnten extrem hohe Spannungen auf den Steuereingängen anliegen. Sorgen Sie dafür, dass dies nicht eintreten kann, andernfalls könnte es zu elektrischen Schlägen oder Unfällen kommen.

riangle vorsicht

- Schließen Sie den Dreiphasenmotor an den Klemmen U, V und W des Frequenzumrichters an. Verletzungsgefahr!
- Der Frequenzumrichter, der Motor und die Verdrahtung strahlen elektromagnetische Störungen ab. Achten Sie darauf, dass diese Störungen nicht zu Fehlfunktionen von benachbarten Sensoren und Geräten führen. Um die Gefahr von Motordefekten zu verringern, sollten entsprechende Entstörungsmaßnahmen

Betrieb

⚠ WARNUNG

- Vergewissern Sie sich vor dem Einschalten des Gerätes, dass der Klemmenblockdeckel geschlossen ist. Entfernen Sie niemals die Abdeckung, solange das Gerät noch an Spannung liegt. Stromschlaggefahr!
- Betätigen Sie die Schalter niemals mit nassen Händen. Stromschlaggefahr!
- Wenn die Wiederanlauf-Funktion aufgerufen wurde, kann es je nach den Fehlerursachen vorkommen, dass der Frequenzumrichter plötzlich automatisch wieder startet. (Legen Sie die angetriebene Maschine so aus, dass die Sicherheit von Personen auch bei einem Neustart nicht gefährdet wird.) Unfallgefahr!
- Wenn die Kippschutz-Funktion aktiviert ist, kann es vorkommen, dass die Betriebsbedingungen von den eingestellten Beschleunigungs-/Verzögerungszeiten oder Drehzahlen abweichen. Auch in solchen Situationen muss die Sicherheit von Personen durch die entsprechende Auslegung der Maschine gewährleistet bleiben. Unfallgefahr!
- Wird ein Alarm bei anstehendem Betriebssignal zurückgesetzt, kann es zu einem plötzlichen Wiederanlaufen des Frequenzumrichters kommen. Kontrollieren Sie vor dem Rücksetzen des Alarms, dass kein Startsignal anliegt. Unfallgefahr!
- Werden die Funktionscodes falsch gesetzt zum Beispiel, weil diese Bedienungsanleitung oder das FRENIC-Lift Benutzerhandbuch nicht aufmerksam gelesen wurde könnte der Motor mit einer Geschwindigkeit laufen, die für die Maschine nicht zulässig ist. Unfallgefahr! Verletzungsgefahr!
- Berühren Sie niemals die Anschlussklemmen des Frequenzumrichters, solange die Netzspannung anliegt, auch wenn sich der Umrichter im Stop-Modus befindet. Stromschlaggefahr!

⚠ VORSICHT

- Starten oder stoppen Sie den Frequenzumrichter nicht durch Ein- oder Ausschalten der Netzspannung. Das Nichtbeachten dieses Hinweises kann zu einem Fehler führen.
- Fassen Sie den Kühlkörper oder den Bremswiderstand nicht mit bloßen Händen an, da diese Komponenten sehr heiß werden. Verbrennungsgefahr!
- Der Frequenzumrichter kann sehr schnell hohe Drehzahlen erreichen. Überprüfen Sie daher vor jedem Verändern der Einstellungen sorgsam die zulässige Drehzahl des Motors und der Maschine. Verletzungsgefahr!
- Nutzen Sie die elektrische Bremsfunktion des Frequenzumrichters nicht anstelle einer mechanischen Feststellbremse. Verletzungsgefahr!

Wartung, Inspektion und Austausch von Teilen

riangle warnung

- Schalten Sie den Umrichter aus und warten sie mindestens 5 Minuten bis Sie mit der Inspektion beginnen. Weiterhin, stellen Sie sicher das die LED anzeige erloschen ist und die Zwischenkreisspannung zwischen den Klemmen P(+) und N(-) niedriger als 25V DC ist. Verletzungsgefahr!
- Wartung, Inspektion und Austausch von Teilen sollte nur von qualifiziertem Personal vorgenommen werden.
- Nehmen Sie Uhren, Schmuck oder andere metallische Gegenstände ab bevor sie mit der Arbeit beginnen.
- Benutzen Sie isoliertes Werkzeug, andernfalls könnten elektrische Schläge oder Verletzungen die Folge sein.

Entsorgung

⚠ VORSICHT

• Behandeln Sie den Umrichter bei Entsorgung wie Industriemüll, andernfalls könnte es zu Verletzungen kommen.

Andere

⚠ WARNUNG

Versuchen Sie niemals den Umrichter zu verändern
 Der Versuch könnte einen elektrischen Schlag oder Verletzungen zur Folge haben.

2. Konformität zu EU Standards

Das CE Zeichen auf Fuji Electric Produkten weist aus, dass diese die Anforderungen der Richtlinie 89/336/EEC zur elektromagnetischen Verträglichkeit (EMV), herausgeben von der Europäischen Union, und die Niederspannungsdirektive 73/23/EEC erfüllen.

Umrichter mit eingebautem EMV Filter die das CE Zeichen tragen erfüllen die EMV Richtlinien. Umrichter ohne eingebauten EMV Filter können die Richtlinien erfüllen wenn ein mit den EMV Richtlinien übereinstimmender optionaler externer Filter verwendet wird.

Universalumrichter unterliegen den Regularien der Niederspannungsrichtlinie der EU. Fuji Electric erklärt das Umrichter mit dem CE Zeichen mit dieser Richtlinie übereinstimmen.

FRENIC Lift Umrichter stimmen mit folgenden Richtlinien der europäischen Union und deren Zusätzen überein:

EMV Richtlinie 2004/108/EEC (elektromagnetischen Verträglichkeit)

Niederspannungsrichtlinie 2006/95/EEC

Zur Beurteilung der Konformität wurden die folgenden relevanten Standards herangezogen:

EN61800-3:2004 EN50178:1997

riangle vorsicht

• FRENIC Lift erfüllt die Kategorie C2 nach EN61800-3:2004. Bei Verwendung in Wohngebieten sind die nötigen EMV Maßnahmen zu treffen um EMV Störungen auf andere Geräte zu vermeiden bzw. zu eliminieren.

3. Technische Daten und Einsatzbereich

3.1 400 V Serie

3.1 400 4 3eHe										
Ausgangswerte										
Type: FRN□□□ LM1S-4□	4.0	5.5	7.5	11	15	18,5	22	30	37	45
Nennspannung	3-phasig 380 V bis 480 V									
Nennfrequenz	50-60 Hz									
Nennleistung bei 440V (kVA)	6,8	10,2	14	18	24	29	34	45	57	69
Typische Motorleistung 4 – pol. Motoren (kW)	4,0	5,5	7,5	11	15	18,5	22	30	37	45
Nennstrom bei 10 kHz Taktfrequenz, 45°C Umgebungstemperatur und 80 % ED (A)	9,0	13,5	18,5	24,5	32	39	45	60	75	91
Überlastbarkeit Strom (A)	18.0 für 3 s	27 für 10 s	37 für 10 s	49 für 10 s	64 für 10 s	78 für 10 s	90 für 10 s	108 für 5 s	135 für 5 s	163 für 5 s
Überlastbarkeit (%)	200 für 3 s			200 f	ür 10 s	1	1 -2 2		180 für 5	_
			Netzeinga	angswerte						
Netzanschluss	3-phasig				j: -15 % bis	+10 %; Fr	equenz: -5	% bis +5 %		
Externe Steuerspannung	3-phasig 380 bis 480 V; 50/60 Hz; Spannung: -15 % bis +10 %; Frequenz: -5 % bis +5 % 1-phasig 200 bis 480 V; 50/60 Hz; Spannung: -15 % bis +10 %; Frequenz: -5 % bis +5 % 380 V bis 48 sonst wie lir						•			
Netzeingangsstrom mit DC-Drossel (A)	7,5	10,6	14,4	21,1	28,8	35,5	42,2	57	68,5	83,2
Netzeingangsstrom ohne DC-Drossel (A)	13	17,3	23,2	33	43,8	52,3	60,6	77,9	94,3	114
Erforderliche Netzleistung [kVA]	5,2	7,4	10k	15	20	25	30	40	48	58
Eingangswerte für Batteriebetrieb			•	•		•	•			
Anschlussspannung Batteriebetrieb	48 VDC o	der höher								
Externe Steuerspannung Batteriebetrieb		200 bis 480 z: -5 % bis +		z ; Spannun	g: -15 % bis	; +10 %;			380 V bis	•
Werte für Bremsbetrieb									•	
Bremszeit max. (s)	60									
Einschaltdauer (%ED)	50									
Kleinster erlaubter Widerstandswert \pm 5% (\square)	96	64	48	24	24	16	16	10	10	8
Optionen und Standards			•	•	•	•	•			
Zwischenkreisdrossel (DCRE)										
EMV – Filter Optional										
Sicherheitsstandards	icherheitsstandards EN61800-5-1, EN ISO 13849 – 1 Kat 3, PL d EN61800-5-1									
Schutzart nach IEC60529	IP20 IP00									
Kühlung	Zwangskühlung mit Lüfter									
Gewicht (kg)	2,8	5,6	5,7	7,5	11,1	11,2	11,7	24,0	33,0	34,0
_*1										

^{*1} Für 10kHz Taktfrequenz, 45°C Umgebungstemperatur und 80% ED

3.2 200 V Serie

Type:	FRN□□□ LM1S-2□						FRN□□□ LM1S-7□
Ausgangswerte							
	5,5	7,5	11	15	18,5	22	2,2
Nennspannung (V)*1	3-pha	sig 200	bis 24	0 V			1-phasig 200 bis 240 V
Nennfrequenz (Hz)	50-60	Hz					
Nennleistung bei 220V (kVA)	10,2	14	18	24	28	34	4,1
Typische Anschlussleistung (kW)	5,5	7,5	11	15	18,5	22	2,2
Nennstrom(A) *2	27	37	49	63	74	90	11
Überlastbarkeit für 10s (A)	54	74	98	126	148	180 für 5s	22 für 3s
Überlastbarkeit für 10s (%)	200						
Eingangswerte							
Netzanschluss	3-phasig 200 bis 240V; 50/60Hz; Spannung: -15% bis +10%; Frequenz: -5% bis +5%					1-phasig 200 bis 240 V; 50/60 Hz; Spannung: - 15 % bis +10 %; Frequenz: -5 % bis +5 %	
Externe Steuerspannung		is 240V					
Netzeingangsstrom mit DC-Drossel (A)	21,1	28,8	42,2	57,6	71	84,4	17,5
Netzeingangsstrom ohne DC- Drossel (A)	31,5	42,7	60,7	80,1	97	112	24
Erforderliche Netzleistung [kVA]	7,4	10	15	20	25	30	3,5
Eingangswerte für Batteriebetrieb							
Anschlussspannung Batteriebetrieb	24VDC oder höher						
Externe Steuerspannung	1-phasig 200 bis 240 V; 50/60 Hz ; Spannung: -15 % bis +10 %; Frequenz:						
Batteriebetrieb	-5 % bis +5 %						
Werte für Bremsbetrieb							
Bremszeit max. (s)	60						
Einschaltdauer (%ED)		50					T
Kleinster erlaubter Widerstandswert ± 5% (□)	15	10	7,5	6	4	3,5	33
Options and Standards							
DC Drossel (DCRE)	Optional						
EMV – Filter Optional							
Sicherheitsstandard	EN61800-5-1, EN ISO 13849 – 1 Kat 3, PL d						
Schutzgrad (IEC60529) IP20							
Kühlung	Lüfter						
Masse (kg)	5,6	5,7	7,5	11,1	11,2	11,7	3,0

^{*1} Die Ausgangsspannung kann niemals höher als die Eingangsspannung sein *2 Für 10kHz Taktfrequenz, 45°C Umgebungstemperatur und 80% ED

3.3 De-rating und Überlastbarkeit 400 V Serie

Umrichterleistung	Maximale	Taktfrequenz: 10kHz (40%ED 45°C)		Taktfrequenz: 12kHz (40%ED 45°C)			Taktfrequenz: 15kHz (40%ED 45°C)			
(kW)	Motorleistung	I Nenn (A)	Überlast (%)	Zeit (s)	I Nenn (A)	Überlast (%)	Zeit (s)	I Nenn (A)	Überlast (%)	Zeit (s)
4.0	4 kW	10.6	170	3	10	180	3	9.5	190	3
5.5	5.5 kW	17.6	170	10	16.7	180	10	14.2	190	10
7.5	7.5 kW	24.1	170	10	22.2	180	10	19.4	190	10
11	11 kW	30.5	170	10	28.9	180	10	25.7	190	10
15	15 kW	37.6	170	10	35.6	180	10	33.6	190	10
18.5	18.5 kW	45	170	10	43	180	10	41	190	10
22	22 kW	54.8	170	10	51.8	180	10	47	190	10
30	30 kW	63.5	170	5	60	180	5	60	180	5
37	37 kW	79.5	170	5	75	180	5	75	180	5
45	45 kW	96	170	5	91	180	5	91	180	5

4. Entfernen und Anbringen der Frontabdeckungen (5,5 bis 22 kW)

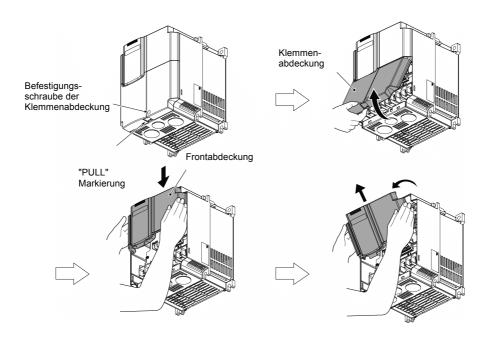


Bild 1: Entfernen der Frontabdeckungen

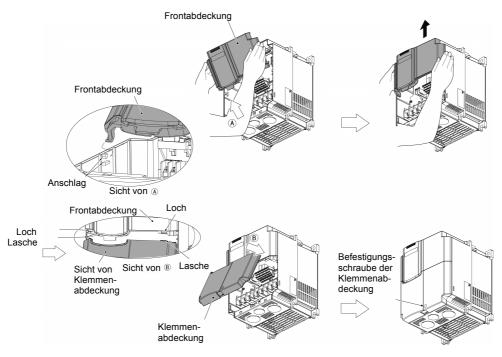
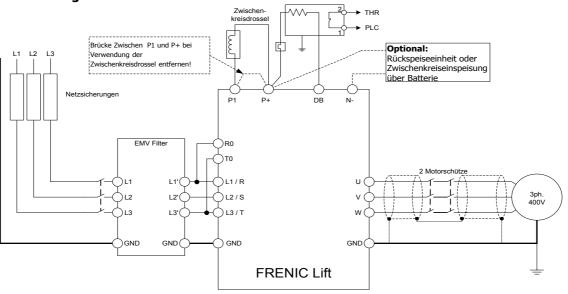
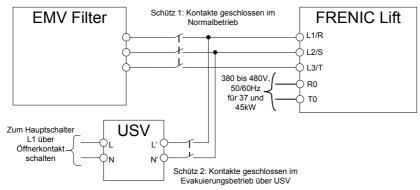



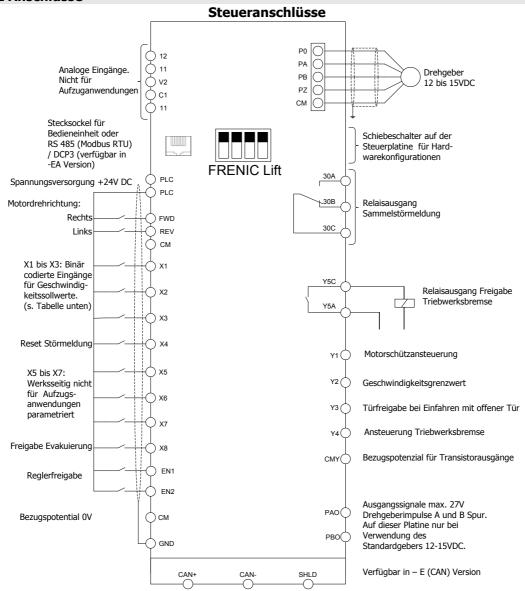
Bild 2: Anbringen der Frontabdeckungen


5.1 Leistungsanschlüsse

Klemmenbezeichnung	Beschreibung der Leistungsanschlüsse
L1/R, L2/S, L3/T	3-phasiger Netzanschluss nach EMV- Filter, Hauptschalter und Hauptsicherungen
U, V, W	3-phasiger Motoranschluss für Asynchron- oder Synchronmotor
R0, T0	Klemmen zum Anschluss einer Wechselspannung, z.B. zur externe Einspeisung des Steuerkreises oder bei Verwendung eines Netzschützes bei Evakuierung. Bei Umrichtern FRN37 oder größer müssen diese Klemmen Angeschlossen sein! (Versorgung AC-Lüfter und Ladekreis)
P1, P(+)	Anschluss der DC-Zwischenkreisdrossel
P(+), N(-)	Anschluss einer optionalen Energierückspeiseeinheit oder Zwischenkreiseinspeisung über Batterie, z.B. Zur Evakuierung.
P(+), DB	Anschluss des externen Bremswiderstandes.
♣ G × 2	2 Klemmen, verbinden das Chassis (Gehäuse) des Frequenzumrichters mit dem Schutzleiter. Achtung! Es darf immer nur 1 Draht unter eine Klemme geklemmt werden!

- Den Leitungsschirm bitte am Umrichter und am Motor auflegen. Stellen Sie sicher, dass der Schirm auch über die Motorschütze kontinuierlich geführt wird.
- Es wird empfohlen ein Temperaturrelais in den Stromkreis des Bremswiderstandes einzubauen. Das Relais soll so eingestellt werden, dass es nur im Falle eines Kurzschlusses des Bremstransistors des Umrichters, auslöst.

Optional: Anschluss einer USV zwecks Evakuierung (Beispiel)



Unverbindlicher schematische Darstellung!

Die Evakuierungseinleitung, die Freigabe und Schaltung der Schütze erfolgt durch die übergeordnete Aufzugsteuerung und ist nicht Leistungsumfang von Fuji Electric.

5.2 Anschlüsse

5.3 Zuordnung der Eingangsklemmen für Geschwindigkeitssollwerte

Tabelle 1: binär codierte Geschwindigkeitssollwerte

Х3	X2	X1	Parameter Binär - Codierung	Wert	Geschwindigkeit	Parameter Geschwindigkeits- Sollwerteinstellung
0	0	0	L11	0 (000)	Null-Geschwindigkeit	C04
0	0	1	L12	1 (001)	Nachregelgeschwindigkeit	C05
0	1	0	L13	2 (010)	Wartungsgeschwindigkeit	C06
0	1	1	L14	3 (011)	Einfahrgeschwindigkeit	C07
1	0	0	L15	4 (100)	Zwischengeschwindigkeit 3	C08
1	0	1	L16	5 (101)	Zwischengeschwindigkeit 2	C09
1	1	0	L17	6 (110)	Zwischengeschwindigkeit 1	C10
1	1	1	L18	7 (111)	Nenngeschwindigkeit	C11

Siehe auch: Parameter E01-E04

Sollten Sie andere Binärkombinationen für die Geschwindigkeiten verwenden wollen, ist die über die Parameter L11 bis L18 möglich.

Tabelle 2: Bei	ispiel für den	Tausch zweier	Binärkombinationen

SS4 (X3)	SS2 (X2)	SS1 (X1)	Parameter Binär - Codierung	Wert	Geschwindigkeit	Parameter Geschwindigkeit
0	0	0	L11	0 (000)	Null-Geschwindigkeit	C04
1///	1	1	L12	47 (111)\	Nachregelgeschwindigkeit	C05
0	1	0	L13	/ 2 (010) \	Wartungsgeschwindigkeit	C06
0	1	1	L14	3 (011)	Einfahrgeschwindigkeit	C07
1	0	0	L15	4 (100)	Zwischengeschwindigkeit 3	C08
1	0	1	L16	5 (101)	Zwischengeschwindigkeit 2	C09
1	1	0	L17	6 (110)	Zwischengeschwindigkeit 1	C10
0	0	1	L18	\1 (001) P	Nenngeschwindigkeit	C11

5.4 Beschreibung der Steuerklemmen

a. Analoge Eingänge

Über die Analogeingänge kann z.B. die Motordrehzahl oder das Motormoment manuell und stufenlos über an die Analogeingänge angeschlossene Potentiometer geregelt werden. Diese finden normalerweise keine Anwendung beim Einsatz für Aufzüge (kein Rucken).

b. Digitale Eingänge

Die Digitaleingänge können in NPN oder PNP Logik betrieben werden. Die Auswahl der Schaltungslogik erfolgt über den Schiebeschalter SW1 auf der Steuerplatine. **Werksseitig ist PNP** (Source) Logik eingestellt (Plus schaltend).

Schaltungsbeispiele in PNP Logik:

Bild 3: Übliche Schaltung über potentialfreie Kontakte der Steuerung

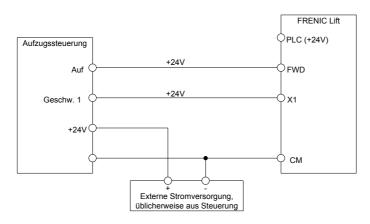


Bild 4: Schaltung über externe Stromversorgung

Tabelle3: Beschreibung der Transistoreingänge (Optokopplereingänge)

Klemme	Funktionsbeschreibung der Digitaleingänge
FWD	Motordrehrichtung links bei Blick auf die A-Seite (Abtriebsseite) des Motors. Je nach Stand der Maschine bzw. Anordnung der Treibscheibe entspricht das der Fahrtrichtung Auf oder Ab.
REV	Motordrehrichtung rechts bei Blick auf die A-Seite des Motors. Je nach Stand der Maschine bzw. Anordnung der Treibscheibe entspricht das der Fahrtrichtung Auf oder Ab.
CM	Bezugspotenzial 0V
X1 bis X3	Eingänge für Fahrgeschwindigkeiten (Sollwerte). Binär codiert können 7 verschiedene Fahrgeschwindigkeiten realisiert werden. (siehe Seite 12)
X4 bis X7	Die Eingänge X4 bis X7 sind werksseitig nicht für Aufzuganwendungen parametriert und werden auch nicht für Standardaufzüge benötigt. Mit diesen Eingängen können ggf. weitere Anwendungen realisiert werden. X6 kann für die Externe Störkette des Bremswiderstandes genutzt werden
X8	Werksseitig parametriert für Evakuierungsfreigabe bei Batterie oder USV Betrieb.
EN1 & EN2	Freigabe der Endstufen. Eine Deaktivierung der Signale während der Fahrt bewirkt einen sofortigen Stopp der Anlage.

Elektrische Spezifikation Digitaleingänge bei PNP (Source) Logik

Spannung	EIN	22 bis 27 V
	AUS	0 bis 2V
Strom	EIN	Min. 2,5mA
		Max.5,0mA

c. Beschreibung der Relaisausgänge

Klemme	Funktionsbeschreibung der Relaisausgänge
30A; 30B und	Wechslerkontakt, bei Störungen, die einen Stopp des Motors verursachen schließt
30C	die Kontaktstrecke 30C-30A.
	Kontaktbelastbarkeit 250VAC; 0,3A/48VDC;0,5A
Y5A-Y5C	Start: Schließerkontakt gibt die Motorschütze frei
	Stopp: Deaktiviert die Motorschütze nach Erreichen von Drehzahl Null und Einfall
	der Triebwerksbremse.
	Kontaktbelastbarkeit 250VAC; 0,3A/48VDC;0,5A

d. Beschreibung der Transistorausgänge

Die Klemmen Y1 bis Y4 sind werksseitig mit den in der Tabelle beschriebenen Funktionen belegt. Andere Funktionen können über die Parameter E20 bis E23 eingestellt werden.

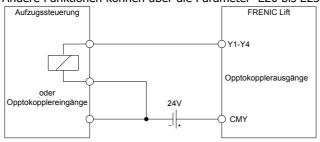


Bild 5: Anschluss in PNP(Source) Logik

Klemme	Funktionsbeschreibung der Transistorausgänge	
Y1	Freigabe Motorschütze in der übergeordneten Aufzugsteuerung.	
Y2	Geschwindigkeitsschwelle für Einfahren bei offenen Türen.	
	Einstellung der Geschwindigkeit über Parameter L87, L88 und L89.	
Y3	Geschwindigkeitsgrenzwert, einstellbar unter Parameter E31 und E32.	
Y4	Funktion wie bei Relaisausgang Y5A-Y5C: Freigabe Triebwerksbremse in der	
	übergeordneten Aufzugsteuerung.	
CMY	Bezugspotential für Transistorausgänge	

Elektrische Spezifikation Digitalausgänge

anoche opezimation digitaladogange			
Spannung	EIN	2 bis 3 V	
	AUS	24 bis 27V	
Strom	EIN	Max.50mA	
Zul. Reststrom	AUS	0,1mA	

max. anliegende Spannung 27VDC – geschaltete Induktivitäten sind zu entkoppeln

e. Kommunikationsschnittstellen

Zur Kommunikation steht eine RS485 und eine CAN Schnittstelle zur Verfügung. Die RJ-45 ermöglicht den Anschluss der FRENIC- Bedieneinheit, eines Laptops (PC) oder die Verbindung zur Steuerung über eine DCP3 – Schnittstelle. DCP und Laptop Verbindung sind RS485 Schnittstellen. Es ist immer nur eine der genannten Verbindungen möglich!

i. Bedieneinheit (Keypad)

Die Bedieneinheit kann über ein Kabel bis zu 20m verlängert werden.

Tabelle 4: Pin Belegung des RJ-45 Steckers:

Pin Nr.	Signal	Funktion	Bemerkungen
1 und 8	Vcc	Spannungsversorgung für Bedieneinheit	5V
2 und 7	GND	Bezugspunkt für Vcc	Masse (0V)
3 und 6	Kein	frei	Nicht verwendet
4	DX-	RS485 data (-)	Bei Anschluss der Bedieneinheit muss der
5	DX+	RS485 data (+)	Schiebeschalter SW3 auf der Steuerplatine in Position OFF stehen (Werkseinstellung). Bei Anschluss eines Laptops oder der DCP3 Verbindung auf Position ON.

Bild 6: RJ-45 Stecker:

ii. DCP3 Protokoll

Unterstützt die Steuerung ein DCP 3 Protokoll können die wesentlichen Bedien-Funktionen über die Bedieneinheit der Steuerung durchgeführt werden.

Dazu werden lediglich die Pins 4 und 5 des RJ-45 Steckers mit den Signalen DATA (-) und DATA (+) benötigt. (siehe Tabelle 10)

iii. Verbindung mit einem Laptop oder PC

Mit dem **LIFT LOADER** steht für den FRENIC Lift ein Programm zur Verfügung, dass eine komfortable Einstellung und Diagnose des Umrichters ermöglicht. Die Verbindung erfolgt ebenfalls über einen RJ-45 Stecker.

Für die Verbindung zur USB Schnittstelle des Laptops wird allerdings ein USB-RS485 Konverter, z.B. Type EX9530 (Expert) benötigt.

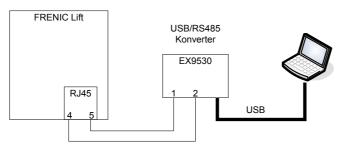


Bild 7: Verbindung FRENIC Lift mit einem Laptop oder PC

iv. CAN Schnittstelle

Hierfür sind die Klemmen CAN+ und CAN- auf der Steuerplatine vorgesehen. Auf die Klemme SHLD wird der Schirm des CAN-Verbindungskabels aufgelegt. Klemme 11 ist CAN_GND.

6. Hardwarekonfiguration

Schiebeschalter für verschiedene Funktionseinstellungen

Auf der Steuerplatine befinden sich insgesamt 4 Schiebeschalter. Mit diesen können verschiedene Konfigurationen eingestellt werden. Bei Auslieferung ist der FRENIC Lift wie folgt konfiguriert:

Tabelle 5: Konfiguration der Schiebeschalter

Konfiguration / Bedeutung	Schalter Werkseinstellung	Mögliche Konfiguration
Digitaleingänge in PNP Logik (Source)	SW1=Source	
Digitaleingänge in NPN Logik (Sink)		SW1=Sink
Sockel RJ 45 mit angesteckte Bedieneinheit	SW3=Aus	
Sockel RJ 45 Verbindung mit Laptop		SW3=EIN
Nicht verwendet bei Aufzuganwendungen	SW4=V2	
PTC Anschluss am Analogeingang V2-11 des Umrichters		SW4=PTC
Nicht verwendet in Europa, Ein entspricht Drehzahlgeberspannung 12V	SW5=12V	
Drehzahlgeberspannung 15V		SW5=15V

- Schalter SW5 ist bei den in Europa üblichen Drehzahlgebern mit Spannungen von 10-30V nicht von Bedeutung.
- Bei Anschluss eines PTC (Kaltleiters) entspricht die Abschaltfunktion des Umrichters nicht der Anforderung nach der EN81-1. Daher sollte diese Option nicht verwendet werden. Hier nur der Vollständigkeit wegen erwähnt.

7. Drehzahlgeber

7.1 Eingangsschaltung für 12V/15V Inkrementalgeber (Standard)

Die Steuerkarte des FRENIC Lift beinhaltet bereits eine Eingangsschaltung zum Anschluss eines Drehzahlgebers bei Verwendung von Asynchronmotoren. Der Anschluss erfolgt über Schraubklemmen. Die Ausgangsspannung 12VDC oder 15VDC wird von den üblichen Gebern HTL 10-30VDC verarbeitet. Impulszahlen von 360 bis 6000 können über den Parameter L02 eingestellt werden.

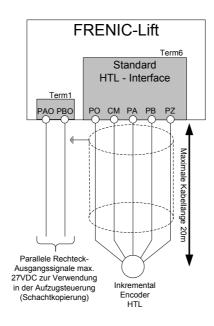
Tabelle 6: Technische Anforderungen an Drehzahlgeber

Eigenschaft	Spezifikation		
Versorgungsspannung	12V oder 15VDC±10%		
Ausgangsschaltung	Open Collector	Gegentaktendstufe	
Zulässige Pulsfrequenz	25kHz	100kHz	
Maximale Kabellänge	20m		

Tabelle 7: Erforderliche Signale und Ihre Bedeutung

Signal	FRENIC Lift Klemme	Bedeutung
A - Spur	PA	Rechteckimpuls Spur A
B - Spur	PB	Rechteckimpuls Spur B um 90° versetzt
+UB	PO	Spannungsversorgung 12 oder 15VDC
0V	CM	Bezugspunkt zu UB
Z	PZ	Nullspur

Ausgangssignale


Die Signale der A-Spur und der B-Spur stehen auch als Rechteck-Ausgangssignale an den Klemmen PAO und PBO zur Verfügung, z.B. um eine Wegmessung für die Steuerung durchzuführen.

Die maximale Ausgangsspannung beträgt 27VDC und der maximal zulässige Ausgangsstrom ist 50mA.

Versorgungsspannung

Die Versorgungsspannung des Gebers kann über den Schiebeschalter SW5 auf der Steuerplatine eingestellt werden. Werkseinstellung ist 12V. Diese kann bei den in Deutschland üblicherweise eingesetzten Drehzahlgebern mit Spannungen von 10-30V so belassen werden.

Bild 8: Anschluss HTL Interface

Die Geberleitung ist immer als geschirmte Leitung auszuführen. Der Schirm ist beidseitig also am Umrichter und am Geber auf Masse bzw. auf die dafür vorgesehen Schutzleiterklemme zu klemmen.

Drehzahlgeber

7.2 Optionale Eingangschaltungen für Drehzahlgeber

Optionskarte OPC-LM1-IL für Asynchronmotoren mit Getriebe

Anwendung:

- Für Asynchronmotoren mit Getriebe
- Wenn die als Standard vorgesehenen Schnittstelle für HTL Geber vom Maschinenhersteller nicht geliefert wird
- Wenn die Drehgeberimpulse auch als Ausgangssignale für die Aufzugsteuerung zur Verfügung stehen sollen

Technische Anforderungen an Drehzahlgeber

- Versorgungsspannung 5VDC ±5%
- 2 gegeneinander um 90° versetzte Impulsspuren (A <u>A</u> B <u>B</u>)
- Maximale Eingangsfrequenz 100kHz
- Empfohlene Impulszahlen: 1024 oder 2048/Umdr. (bei hocheffizienten Getrieben, z.B. Schnecken-Stirnrad sollten Geber mit 2048 Impulsen/Umdr. verwendet werden)

Sonstige Kenndaten und Einsatzbedingungen

- Maximale Kabellänge 20m
- Es dürfen nur geschirmte Leitungen verwendet werden

Bild 9: Anschluss Optionskarte OPC - LM1 - IL

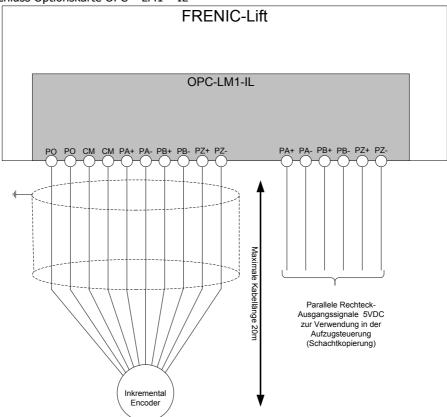


Tabelle 8: Bedeutung der Anschlussklemmen auf der OPC-LM1-IL

Tabelle 8. Bedeutung der Anschlusskienimen auf der OPC-Livi-il			
Klemmenbezeichnung / Signalbezeichnung	Beschreibung		
P0	Spannungsversorgung 5VDC, 300mA max. für Drehzahlgeber		
CM	Bezugspotenzial 0V		
PA+	Positiver Rechteckimpuls der Spur A		
PA-	Negativer Rechteckimpuls der Spur A		
PB+	Positiver Rechteckimpuls der Spur B		
PB-	Negativer Rechteckimpuls der Spur B		
PZ+	Positiver Rechteckimpuls der Spur Z		
PZ-	Negativer Rechteckimpuls der Spur Z		

Drehzahlgeber

7.3 Optionskarte OPC-LM1-PS1 für Synchronmotoren

Anwendung:

- Für getriebelose Synchronmotoren
- Für Geber Fabrikat Heidenhain Type ECN1313 EnDat 2.1

Sonstige Kenndaten und Einsatzbedingungen

- Ausgangsimpulse: 2048 Sin/Cos Perioden pro Umdr.
- Betriebsspannung: 5VDC±5%; 300mA
- Datenschnittstelle: EnDat 2.1

Bild 10: Anschluss Optionskarte OPC-LM1-PS1

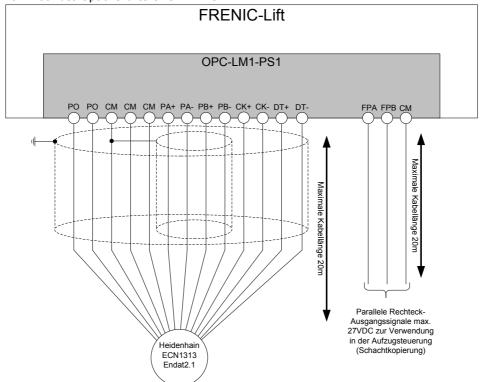


Tabelle 9: Bedeutung der Anschlussklemmen auf der OPC-LM1-PS1

Klemmenbezeichnung Optionskarte	Signalbezeichnung des Herstellers (Heidenhain)	Beschreibung
P0	Up und Up Sensor	Versorgungsspannung 5V, Anschluss Up Sensor bei
		Leitungslängen >10m erforderlich
CM	0V (Up) und 0V Sensor	Bezugspunkt Versorgungsspannung
PA+	A+	Phase der Spur A
PA-	A-	Phase der Spur A invertiert
PB+	B+	Phase der Spur B
PB-	B-	Phase der Spur B invertiert
CK+	Clock+	Taktsignal zur seriellen Übertragung
CK-	Clock-	Taktsignal invertiert
DT+	DATA+	Datenleitung zur Kommunikation mit Absolutwertgeber
DT-	DATA-	Datenleitung invertiert

- Die Lieferung der hier beschriebenen Optionskarten erfolgt als separate Verpackungseinheit. Eine ausführliche Beschreibung liegt der Lieferung bei.
- **6** ✓ Vor der Erstinbetriebnahme ist immer die Geberauflösung (Impulszahl pro/Umdr.) im Menü unter LO2 zu parametrieren.
- **ℰ** Bei Synchronmotoren ist zusätzlich der verwendete Gebertyp unter L01 zu parametrieren.

Drehzahlgeber

7.4 Optionskarte OPC-LM1-PR für Synchronmotoren

Anwendung:

- Für getriebelose Synchronmotoren
- Für Geber Fabrikat Heidenhain Type ERN1387

Sonstige Kenndaten und Einsatzbedingungen

- Ausgangsimpulse: 2048 Sin/Cos Perioden pro Umdr.
- Betriebsspannung: 5VDC±5%; 300mA
- Kommutierungssignale: 1 Sin/Cos Signal mit 1 Periode pro Umdr.

Bild 11: Anschluss Optionskarte OPC-LM1-PR

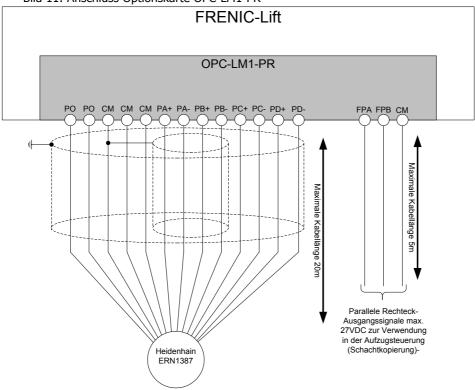


Tabelle 10: Bedeutung der Anschlussklemmen auf der OPC-LM1-PR

Klemmenbezeichnung Optionskarte	Signalbezeichnung des Herstellers (Heidenhain)	Beschreibung	
P0	Up und Up Sensor	Versorgungsspannung 5V, Anschluss Up Sensor bei	
		Leitungslängen >10m erforderlich	
CM	0V (Up) und 0V Sensor	Bezugspunkt Versorgungsspannung	
PA+	A+	Phase der Spur A	
PA-	A-	Phase der Spur A invertiert	
PB+	B+	Phase der Spur B	
PB-	B-	Phase der Spur B invertiert	
PC+	C+	Phase der Spur C (Absolutspur)	
PC	C-	Phase der Spur C invertiert (Absolutspur)	
PD+	D+	Phase der Spur D (Absolutspur)	
PD-	D-	Phase der Spur D invertiert (Absolutspur)	

- Vor der Erstinbetriebnahme ist immer die Geberauflösung (Impulszahl pro/Umdr.) im Menü unter LO2 zu parametrieren.
- Auch für die Verwendung mit Asynchronmotoren geeignet (nur PA und PB; L01: 0)
- Bei Synchronmotoren ist zusätzlich der verwendete Gebertyp unter L01 zu parametrieren.
- Es wird empfohlen diesen Encoder nur mit Motoren mit einer Polzahl ≤ 24 zu verwenden

8. Bedienung über Bedienteil

8.1 Übersicht

Zur Bedienung, Inbetriebnahme, Parametrierung und Fehlerdiagnose des FRENIC Lift sind 2 Varianten vorgesehen.

Über Bedieneinheit TP-G1-ELS des Umrichters oder über einen Laptop (PC). Zur Bedienung über einen Laptop bzw. PC ist die Kommunikationssoftware *Fuji Lift Loader* erforderlich. Diese ist auf Anforderung frei erhältlich bzw. kann aus dem Internet unter www.fujielectric.de herunter geladen werden.

Das Bedienteil ist über den Sockel RJ45 auf der Steuerplatine direkt mit dem FRENIC Lift verbunden. Dieser Anschluss wird auch für die Verbindung mit einem Laptop oder der Kommunikation mit der Steuerung über das DCP Protokoll verwendet.

Bild 12: Übersicht Bedienteil TP-G1-ELS

LED-Anzeige, zeigt die vom Gerät überwachten Werte, z.B. Frequenz-Soll- oder Istwert oder Störmeldecodes an.

Darstellung der jeweils aktuellen Maßeinheiten und Multiplikatoren des in der LED-Anzeige angezeigten Wertes. Die aktuelle Einheit wird durch einen Balken _ unterhalb der Maßeinheit oder des Multiplikators kenntlich gemacht.

LCD-Anzeige zur Darstellung verschiedener Informationen, wie Betriebszustand, Parameter oder Werte eines Parameters. Die untere Zeile enthält Hinweise zur Bedienführung.

- a) Zeigt die aktuellen Betriebszustände wie FWD = AUF, REV = AB oder Stop = Stillstand an.
- b) Zeigt die aktuelle Betriebsart an. Bei Aufzügen entweder Klemmleistenbetrieb = REM oder über DCP = COMM

Bedientasten: Mit diesen Tasten können Bildschirmausgaben eingestellt und Parameter geändert werden. $\$

Erklärung der Bedientasten:

PRG

Mit dieser Taste wird zwischen Betriebs- und Programmiermodus gewechselt

SHIFT

Bewegt im Programmiermodus den Cursor nach rechts

Im Fehlermodus: Fehler zurücksetzen

Im Programmiermodus: Parameter unverändert lassen

Im Programmiermodus: Parameter aus angezeigtem Menü auswählen oder Wert in einem Parameter verändern.

Im Betriebsmodus: bei Betrieb über Bedieneinheit Änderung der Frequenz.

Nicht für Aufzüge!

Im Programmiermodus: Parameter unverändert lassen

Im Programmiermodus: Parameter eingeben oder speichern.

Im Betriebsmodus: Angezeigte Maßeinheit oder Multiplikator für die LED Anzeige auswählen.

REM LOC

Wechsel zwischen Normal- (Klemmenleisten-) und Bedienteilbetrieb

REV

STOP

Diese 3 Tasten finden bei Aufzügen keine Verwendung. Mit diesen Tasten kann der Motor bei entsprechender Parameteraktivierung gestartet und gestoppt werden.

Bedienung über Bedienteil

8.2 Das Menü der Bedieneinheit

Die komplette Menüauswahl wird über die **PRG-Taste** aufgerufen. Die LCD Anzeige zeigt dann die ersten 4 Menüs aus einer Liste der möglichen Menüs.

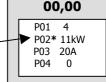
Bild 13: gesamte Menüliste

- 1.PAR. ÄNDERN
- 2.PAR. CHECK
- 3.BETR.ANZG.
- 4.I/O CHECK
- **5.**WARTUNG
- **6.**ALARM INFO
- 7.FEHL.DIAG.
- **8.**KOPIEREN
- 9. LAST FAKT.

Bedeutung der einzelnen Menüs

1. PAR. ÄNDERN

Das wichtigste Menü zur Inbetriebnahme. Angezeigt wird eine Liste der Parameter. Jedem Parameter ist eine Nummer und ein Name zugeordnet. Nach Wahl eines Parameters kann dieser überprüft und wenn erforderlich geändert werden.

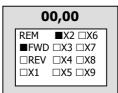

2. PAR. CHECK

Auch hierüber können Parameter verändert werden. Bei Aufruf des Menüs wird eine Parameterliste mit den entsprechenden Nummern (ohne Namen) und die eingestellten Werte angezeigt. Im Unterschied zum Menü PAR. ÄNDERN werden Änderungen der Werkseinstellung mit einem Sternchen gekennzeichnet.

Mit der FUNC Taste kann der angezeigte Parameter zwecks Änderung aufgerufen werden.

Bild 14: Data Check

Parameter wurde geändert


3. BETR.ANZG.

Hiermit können auf der LCD verschiedene Betriebswerte angezeigt werden. Es sind 4 verschiedene Bildschirme mit jeweils 4 Zeilen möglich, z.B. Ausgangsfrequenz, Ausgangsstrom, Ausgangsspannung und berechnetes Drehmoment.

4. I/O CHECK

Zur Überprüfung, ob der FRENIC Lift die korrekten Eingangssignale aus der übergeordneten Steuerung erhält und ob die Ausgangssignale korrekt ausgegeben werden ist der I/O Check sehr hilfreich. Ausgangs- und Eingangssignale können auf der LCD separat dargestellt werden.

Bild 15: Beispiel mit Darstellung der Eingänge Hier sind die Eingänge ■X2 und ■FWD aktiv.

5. WARTUNG

Zeigt den Zustand des Umrichters, die Lebensdauer, die Häufigkeit von Kommunikationsfehlern sowie die Softwareversion an.

6. ALARM INFO

Hier können verschiedene Betriebsdaten einschließlich der Ein- und Ausgänge während der letzten Alarmmeldung (Fehlermeldung) aufgerufen werden

Bedienung über Bedienteil

7. FEHL.DIAG.

Hier wird der Fehlerspeicher angezeigt. Nach Auswahl eines Fehlers aus der Liste und Betätigung der Func Taste werden Informationen zur Fehlerbeseitigung bzw. Gründe für eine DATA Abschaltung angezeigt.

8. KOPIEREN

Über diese Funktion können Parameterdaten von einem Umrichter zu einem anderen Umrichter übertragen werden. Das kann hilfreich sein, wenn sich mehrere gleiche Anlagen in einem Gebäude befinden. Zu beachten ist allerdings, dass Parameterschutz, Motordaten und Schnittstellenparameter nicht mitkopiert werden.

9. LAST FAKT.

Hier kann der Maximalstrom, der mittlere Strom und die Durchschnittsbremskraft während einer festgelegten Messzeit bei laufender Anlage durchgeführt werden

Beispiel Parametereinstellung

Bild 16: LCD Anzeige der ersten 4 Menüs nach drücken der **PRG** Taste



Bild 18: Aufruf des Menüs Par, Ändern

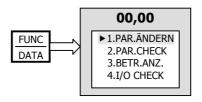


Bild 20: Parameter aufrufen

Bild 17: Vorwahl eines Menüs (hier Wartung)

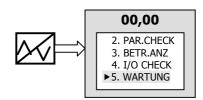


Bild 19: Vorwahl eines Parameters.Hier **P03 Nennstrom** aus der Gruppe

Motorparameter

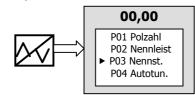


Bild 21: Wert, hier 12 Motornennstrom ändern

DATA

Nach erfolgter Änderung kann über die Pfeiltaste der nächste zu ändernde Parameter ausgewählt werden. Die Speicherung der geänderten Werte erfolgt über die FUNC Taste.

Ein Abbruch ohne Übernahme der Änderungen ist über die Reset Taste RESET möglich.

9. Signalfolge eines Fahrtablaufes mit Normalfahrt bei Nenngeschwindigkeit

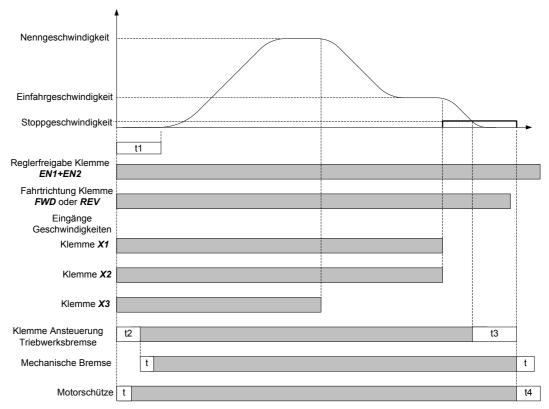


Bild 22: Signalfolge einer Normalfahrt

Beschreibung des Fahrtablaufes

Start:

Durch Aktivierung der Klemme FWD(Auf) oder REV(Ab) und der Klemme EN1 und EN2 (Reglerfreigabe) beginnen die Zeiten t1 und t2 zu laufen. Gleichzeitig können die Klemmen X1 bis X3 für die Geschwindigkeitsvorgaben aktiviert werden.

Nach Ablauf der Zeit **t2** wird der Ausgang **"Freigabe Bremse"** aktiviert und die mechanische Triebwerksbremse öffnet nach einer Eigenverzugszeit. Nach Ablauf der Zeit t1 werden die Geschwindigkeitssollwerte freigegeben und der Aufzug startet.

Stopp:

Am von der Steuerung festgelegten Schaltpunkt wird die Klemme X3 deaktiviert womit die Verzögerung eingeleitet wird. Nach Abfahren der eingestellten S-Kurve fährt der Fahrkorb mit der Einfahrgeschwindigkeit (Sollwert an Klemme X1 und X2) weiter. Nach Erreichen des Bündigschalters wird auch die Einfahrgeschwindigkeit (Kl. X1; X2)deaktiviert. Nach Abfahren der S-Kurve kommt der Fahrkorb bei Motordrehzahl NULL zum stehen. Jetzt beginnt die Zeit t3 zu laufen. Nach Ablauf der Zeit fällt die Triebwerksbremse mit einer Eigenverzugszeit ein.

Zur Steuerung der Motorschütze kann auch der dafür vorgesehene Transistorausgang **Y1** des FRENIC – Lift verwendet werden. Damit wäre sichergestellt, dass die Motorschütze immer erst nach Einfall der Triebwerksbremse ausgeschaltet werden.

Beschreibung der Zeiten

Zeit	Parameter	Beschreibung	
t		Eigenverzugszeiten (Trägheiten) der Bremse und der Motorschütze	
t1	F24	Zeit bis zum Start des Aufzuges	
t2	L82	Zeit bis zum Lüften der Triebwerksbremse	
t3	L83	Zeit bis zum Schließen der Triebwerksbremse	
t4	Steuerung	Zeitverzug ab Deaktivierung Reglerfreigabe bis Motorschützabschaltung	

10. Signalfolge der Eingänge X1-X3 bei Zwischengeschwindigkeiten

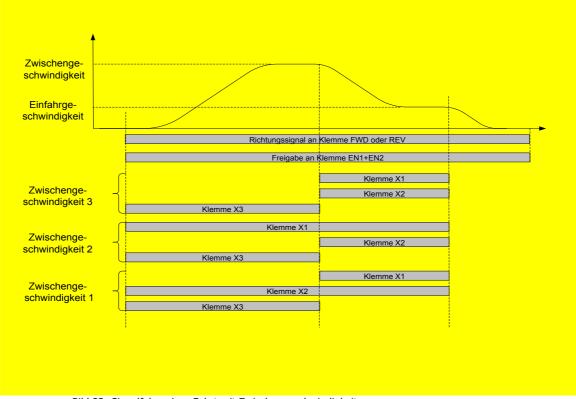


Bild 23: Signalfolge einer Fahrt mit Zwischengeschwindigkeiten

11. Einstellungen

11.1 Einleitung

Die Anpassung des Umrichters an die Anwendung erfolgt durch Einstellungen verschiedener Parameter des Umrichtermenüs. Insbesondere **Motorparameter** und **Fahrkurvenparameter** sind den unterschiedlichen Einsatzbedingungen anzupassen. Alle Parameter werden entsprechend vorhandenen Anlage- und Motordaten vor der ersten Fahrt eingestellt. Die Optimierung der Fahreigenschaften erfolgt anschließend und nach vollständiger Montage.

Die ersten Fahrten zur Prüfung des Motorlaufes sollten immer über die vom Schaltschrank aus zu bedienende Rückholeinrichtung der Steuerung erfolgen.

Schrittweises Vorgehen

- Sicherstellen, dass der Drehzahlgeber korrekt angeschlossen ist und der angebaute Gebertyp auch für den eingesetzten Motor geeignet ist. (Siehe dazu auch im Kapitel **Drehzahlgeber** oder/und **Anschlüsse**) Der Schirm des Geberkabels muss auf der Geber- (Motor) und Umrichterseite auf Masse angeschlossen sein.
- 2. Sicherstellen, dass die Motorleitungen U,V,W angeschlossen sind und das Schirmgeflecht des Kabels am Motor und Umrichter auf Masse (geerdet) geklemmt ist.
- Sicherstellen, dass die Schutzleiter der Netzzuleitung und des Motorkabels am Umrichter bzw. Motor angeschlossen sind.
- 4. Sicherstellen, dass der Bremswiderstand angeschlossen ist und der Schutzleiter aufgelegt ist.
- Sicherstellen, dass die Eingangs-Signale FWD oder REV; X2 und EN1 und EN2 bei Betätigung einer Fahrtrichtung über die Rückholeinrichtung an den Eingangsklemmen aktiv sind.
 - Die Ausgangssignale Freigabe Triebwerksbremse auf Klemme **Y5C** und wenn steuerungsseitig so vorgesehen das Ausgangssignal "Freigabe Motorschütze" auf Klemme **Y1** sollten ebenfalls aktiv sein.
 - Der Status der Signale kann auf dem LC Display der Bedieneinheit angezeigt werden. Siehe hierzu im Kapitel Bedienung.
- 6. Eingabe (siehe nachfolgende Listen für Asynchronmotoren und Synchronmotoren)
- 7. Autotuning bei Asynchronmotoren oder Rotorlageabgleich bei Synchronmotoren durchführen
- 8. Optimierung der Fahreigenschaften

11.2 Spezifische Einstellungen bei Asynchronmotoren (mit Encoder)

Bei Asynchronmotoren ist zuerst das Autotuning durchzuführen. Die Triebwerksbremse bleibt dabei geschlossen. Dazu sind die in folgender Tabelle beschriebenen Parameter einzugeben.

Parameter Nr.	Bedeutung	Werksein- stellung	Eingabe- wert
E46	Spracheinstellungen (Umstellung auf deutsche Klartexte)	1	3
C21	Auswahl der Einheit für die Geschwindigkeitsauswahl	0	Anlagenabhängig
P01	Polzahl Motor aus Datenblatt Hersteller oder vom Typenschild Muss vor F03 gesetzt werden!	4	Motorabhängig
F03	Asynchrondrehzahl, (Typenschild). Die Einheit ist immer U/min, unabhängig von C21; Einstellwert ist meist die Drehzahl bei Nenngeschwindigkeit.	1500 u/min	Motorabhängig
L31	Linearisierungsfaktor für Linear- zu Rotationsgeschwindigkeit	60.0	Anlagenabhängig
F04	Synchrondrehzahl, Einheit abhängig von Parameter C21. 1500U/min für 4pol Motor (50Hz) und 1000U/min für 6pol Motor (50Hz)	1500 u/min	Motorabhängig
F05	Nennspannung des Motors vom Typenschild (in Europa üblicherweise 400V)	380V	Motorabhängig
P02	Motorleistung vom Typenschild in kW	Entsprechend Umrichtertyp	Motorabhängig
P03	Motornennstrom vom Typenschild in A	Entsprechend Umrichtertyp	Motorabhängig
P04	P06,P07,P08 und P12 werden automatisch ermittelt	0	2
P06	Leerlaufstrom Motor in A, wird durch Autotuning automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P07	Anteil R1 Widerstand in %, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P08	Anteil X1 Impedanz in %, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P12	Schlupffrequenz in Hz, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	0,00 Hz	automatisch
L01	Drehzahlgebersystem	0	0
L02	Anzahl Impulse des Drehzahlgebers pro Umdrehung vom Typenschild des Gebers oder Datenblatt des Herstellers.	1024pulses/rev	Geberabhängig
L36	P-Anteil Drehzahlregler bei hoher Geschwindigkeit	10	Anlagenabhängig
L38	P-Anteil Drehzahlregler bei kleiner Geschwindigkeit	10	Anlagenabhängig

Durchführung des Autotuning in 6 Schritten

Zur Durchführung des beschriebenen Rotorlagenabgleiches muss der Eingang Reglerfreigabe an Klemmen EN1 und EN2 eingeschaltet sein. Der entsprechende Kontakt in der Steuerung muss geschlossen sein.

- 1. Sind Motor und Drehzahlgeber korrekt angeschlossen?
- 2. Umrichter einschalten
- 3. Die Parameter aus obenstehender Tabelle müssen eingegeben sein
- 4. Prüfen, ob die Impulse des Drehzahlgeber am Umrichter ankommen wie folgt: Bedieneinheit auf **Menu 4. I/O Check** schalten und mit Pfeiltasten blättern bis das Display die Reihen P1, Z1, P2, Z2 zeigt. Im Display der Bedieneinheit soll jetzt +0 p/s in der Reihe P2 angezeigt werden. Bremse lüften und ggf. Motor mittels Handrad ein wenig drehen. Dabei müssen im Display die Impulse größer 0 angezeigt werden. Wird "----p/s angezeigt, kommen keine Signale des Drehzahlgebers am Umrichter an. In diesem Fall sind die Anschlüsse und das Kabel zu prüfen.
- 5. Stelle den Parameter P04 auf 2 und drücke FUNC/DATA
- 6. Gebe den Fahrbefehl an den Umrichter, im Normalfall mittels Rückholung über die Steuerung, um das Autotuning zu starten. Jetzt wird der Motor bestromt, was am leichten Motorgeräusch zu hören ist. Das dauert einige Sekunden. Danach ist das Autotuning beendet.

11.3 Spezifische Einstellungen bei Synchronmotoren

Bei Synchronmotoren ist zuerst ein Rotorlageabgleich durchzuführen. Dazu sind die in folgender Tabelle beschriebenen Parameter einzugeben. Danach ist der Rotorlageabgleich durchzuführen. Die Triebwerksbremse bleibt dabei geschlossen.

Parameter Nr.	Bedeutung	Werksein- stellung	Eingabe- werte
H03	Initialisierung der Werksparameter für Synchronmotor	0	2
L01	Drehimpulsgebersystem: ECN 1313 EnDat 2.1 oder ERN 1387 ist möglich. Vom Typenschild oder Datenblatt Hersteller	0	4 für Endat 2.1 5 für ERN 1387
	Setzen sie den Umrichter kurzzeitig spannungslos (Keypad erloschen)		
E46	Spracheinstellungen (Umstellung auf deutsche Klartexte)	1	3
C21	Auswahl der Einheit für die Geschwindigkeitsauswahl	0	Anlagenabhängig
P01	Polzahl Motor aus Datenblatt Hersteller oder vom Typenschild Muss vor F03 gesetzt werden!	20	Motorabhängig
F03	maximale Motordrehzahl, die Einheit ist immer U/min (unabhängig von C21). Normalerweise wird auf F03 auf die Drehzahl bei Nenngeschwindigkeit eingestellt.	60 u/min	Motorabhängig
L31	Linearisierungsfaktor für Linear- zu Rotationsgeschwindigkeit	60.00	Anlagenabhängig
L36	P-Anteil Drehzahlregler bei hoher Geschwindigkeit	2,5	2
L38	P-Anteil Drehzahlregler bei kleiner Geschwindigkeit	2,5	2
F04	Motornenndrehzahl (Typenschild). Die Einheit ist abhängig von Parameter C21	60 u/min	Motorabhängig
F05	Nennspannung des Motors vom Typenschild (in Europa üblicherweise 400V)	380V	Motorabhängig
P02	Motorleistung vom Typenschild in kW	4kW	Motorabhängig
P03	Motornennstrom vom Typenschild in A	12A	Motorabhängig
P06	Leerlaufstrom Motor in A (bei Synchronmotoren hier Eingabe Null)	0A	0A
P07	Anteil R1 Widerstand in %,	5%	5%
P08	Anteil X1 Impedanz in %,	10%	10%
L02	Anzahl Impulse des Drehzahlgebers pro Umdrehung vom Typenschild des Gebers oder Datenblatt des Herstellers.	2048 p/rev	Geberabhängig
L04	Nach erfolgter Prozedur der Rotorlagermittlung wird hier ein Zahlenwert (Offset) angezeigt. Es wird empfohlen sich diesen Wert zu notieren und im Gerät oder am Motor zu hinterlegen	0,00	automatisch
L05	ACR P-Verstärkung	1.5	Anlagenabhängig

Durchführung des Rotorlagenabgleiches in 8 Schritten:

Zur Durchführung des beschriebenen Rotorlagenabgleiches muss der Eingang Reglerfreigabe an Klemmen EN1 und EN2 eingeschaltet sein. Der entsprechende Kontakt in der Steuerung muss geschlossen sein.

- 1. Sind Motor und Drehimpulsgeber korrekt angeschlossen?
- 2. Umrichter einschalten

3. Die Parameter aus obenstehender Tabelle müssen eingegeben sein

- 4. Prüfen, ob die Impulse des Drehzahlgeber am Umrichter ankommen wie folgt: Bedieneinheit auf Menu 4. I/O Check schalten und mit Pfeiltasten blättern bis das Display die Reihen P1, Z1, P2, Z2 zeigt. Im Display der Bedieneinheit soll jetzt +0 p/s in der Reihe P2 angezeigt werden. Bremse lüften und ggf. Motor mittels Handrad ein wenig drehen. Dabei müssen im Display die Impulse größer 0 angezeigt werden. Wird "----p/s angezeigt, kommen keine Signale des Drehzahlgebers am Umrichter an. In diesem Fall sind die Anschlüsse und das Kabel zu prüfen.
- 5. Stelle den Parameter L03 auf den Wert 1.
- 6. Gebe den Fahrbefehl an den Umrichter, im Normalfall mittels Rückholung über die Steuerung, um das Autotuning zu starten. Jetzt wird der Motor bestromt, was am leichten Motorgeräusch zu hören ist. Das dauert einige Sekunden. Nach erfolgreicher Rotorlagenermittlung wird der Offset gespeichert und unter **L04** angezeigt. Den hier angezeigten Wert unbedingt notieren und im Schaltschrank hinterlegen.. Wird im Display ER7 angezeigt, tausche 2 Motorphasen und wiederhole Schritt 5 und 6.
- 7. Wenn möglich, lüfte die Bremse und drehe die Motorwelle (Treibscheibe) um 90 Grad
- 8. Führe Schritt 5 und 6 nochmals aus. Das Resultat im Parameter L04 sollte annähernd dem vorherigen entsprechen, Richtwert ± 15°.

Article II. L05: ACR P Verstärkung

$$L05 = 4,33 \cdot \frac{I_n \times L}{V_n} \qquad \qquad \begin{array}{c} \text{L} & \text{Motor Induktivität [mH]} \\ \text{V}_n & \text{Motor Nennspannung [V] (F05)} \\ \text{I}_n & \text{Motor Nennstrom [A] (P03)} \\ \end{array}$$

11.4 Spezifische Einstellungen bei Asynchronmotoren (Getriebemotoren ohne Encoder bis 22kW)

Bei Asynchronmotoren ist zuerst das Autotuning durchzuführen. Die Triebwerksbremse bleibt dabei geschlossen. Dazu sind die in folgender Tabelle beschriebenen Parameter einzugeben.

Parameter Nr.	Bedeutung	Werksein- stellung	Eingabe-wert
E46	Spracheinstellungen (Umstellung auf deutsche Klartexte)	1	3
C21	Auswahl der Einheit für die Geschwindigkeitsauswahl	0	Anlagenabhängig
P01	Polzahl Motor aus Datenblatt Hersteller oder vom Typenschild Muss vor F03 gesetzt werden!	4	Motorabhängig
F03	Asynchrondrehzahl, (Typenschild). Die Einheit ist immer U/min, unabhängig von C21; Einstellwert ist meist die Drehzahl bei Nenngeschwindigkeit.	1500 u/min	Motorabhängig
L31	Linearisierungsfaktor für Linear- zu Rotationsgeschwindigkeit	60.0	Anlagenabhängig
F04	Synchrondrehzahl, Einheit abhängig von Parameter C21. 1500U/min für 4pol Motor (50Hz) und 1000U/min für 6pol Motor (50Hz)	1500 u/min	Motorabhängig
F05	Nennspannung des Motors vom Typenschild (in Europa üblicherweise 400V)		Motorabhängig
F09	Drehmomentanhebung	0.0%	Applikationsabhängig
P02	Motorleistung vom Typenschild in kW		Motorabhängig
P03	Motornennstrom vom Typenschild in A	Entsprechend Umrichtertyp	Motorabhängig
P04	P06,P07,P08 und P12 werden automatisch ermittelt	0	2
P06	Leerlaufstrom Motor in A, wird durch Autotuning automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P07	Anteil R1 Widerstand in %, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P08	Anteil R1 Impedanz in %, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	Entsprechend Umrichtertyp	automatisch
P12	Schlupffrequenz in Hz, wird automatisch ermittelt. Der ermittelte Wert überschreibt die Werkseinstellung	0,00 Hz	automatisch
F42	Drehmoment – Vektor – Steuerung	0	2
F20	DC – Bremse (Startfrequenz)	0.00 u/min	Anlagenabhängig
F21	DC – Bremse (Bremspegel)	0%	Anlagenabhängig
F22	DC – Bremse (Bremszeit)	0.00s	Anlagenabhängig
F23	Startfrequenz	0.00 Hz	Anlagenabhängig
F24	Startfrequenz (Haltezeit)	0.00s	Anlagenabhängig
F25	Stopfrequenz	3.00 Hz	Anlagenabhängig
H64	Haltezeit für Nullgeschwindigkeit	0.00s	Anlagenabhängig
H65	Beschleunigungszeit für Sanftstart auf Startfrequenz (F23)	0.00s	Anlagenabhängig
F09	Drehmomentanhebung	0.0	Anlagenabhängig

Durchführung des Autotuning in 5 Schritten

Zur Durchführung des beschriebenen Rotorlagenabgleiches muss der Eingang Reglerfreigabe an Klemmen EN1 und EN2 eingeschaltet sein. Der entsprechende Kontakt in der Steuerung muss geschlossen sein.

- 1. Ist der Motor korrekt angeschlossen?
- 2. Umrichter einschalten
- 3. Die Parameter aus obenstehender Tabelle müssen eingegeben sein
- 4. Stelle den Parameter P04 auf 2 und drücke FUNC/DATA
- 5. Gebe den Fahrbefehl an den Umrichter, im Normalfall mittels Rückholung über die Steuerung, um das Autotuning zu starten. Jetzt wird der Motor bestromt, was am leichten Motorgeräusch zu hören ist. Das dauert einige Sekunden. Danach ist das Autotuning beendet.

11.5 Zusätzliche Einstellungen für Asynchronmotoren ohne Encoder

- Leerlaufstrom (Parameter P06)

Der Leerlaufstrom (Parameter P06) definiert den Motorstrom wenn keine Last auf den Motor wirkt (Erregungsstrom).

Typische Werte für den Leerlaufstrom bewegen sich in einem Bereich von 30 % bis zu 70% von **P03** (Motornennstrom). In der Mehrzahl der Anwendungen ist der gemessene Wert (P04 zu 2) korrekt. Aufgrund spezieller Motoreigenschaften, kann es vorkommen, dass das Autotuning nicht korrekt beendet werden konnte, in diesem Fall muss P06 manuell gesetzt werden. Zu kleine Werte können dazu führen, dass der Motor nicht genug Moment erzeugt. Zu hohe Werte führen zu einem Schwingen im Motor, dies wird sich als Vibration auf die Kabine übertragen.

Eine gute Abschätzung ergibt sich mit folgender Formel: P06 = $\sqrt{(P03)^2 - (\frac{P02*1000}{1.47*F05})^2}$

- Schlupffrequenz (Parameter P12)

Die Schlupffrequenz definiert den Schlupf des Motors. Sie ist der Schlüssel zu einer guten Schlupfkompensation durch den Umrichter; das bedeutet, dass diese Funktion essentiell für jede Anwendung ohne Drehgeber ist. Sie beeinflusst die Regeleigenschaften und somit die Performance beim Erreichen der Haltestelle, da hiermit sichergestellt wird, das die Drehfrequenz unabhängig von den Lastbedingungen geregelt werden kann.

In der Mehrzahl der Anwendungen ist der gemessene Wert (P04 zu 2) korrekt. Aufgrund spezieller Motoreigenschaften, kann es vorkommen, dass das Autotuning nicht korrekt beendet werden konnte, in diesem Fall muss P12 manuell gesetzt werden.

Zur Bestimmung von P12 verwenden sie bitte folgende Formel:

$$P12 = \frac{(Synchrondrehzahl(rpm) - Nenngeschwindigkeit(rpm)) \times Polzahl}{120}$$

Die Schlupffrequenz kann auch experimentell bestimmt werden:

Fahre die Kabine in **leerem** Zustand sehr langsam (max. Einfahrgeschwindigkeit) in beide Richtungen. Bestimme die Rotationsgeschwindigkeit (oder die Zeit die für eine bestimmte Strecke nötig ist) Wenn die Geschwindigkeit bei Aufwärtsfahrt höher ist als Abwärts erhöhe den Wert für P12. Wenn die Geschwindigkeit bei Aufwärtsfahrt niedriger ist als Abwärts verringere den Wert für P12.

11.6 Einstellung der Fahrkurve

Fuji Electric

Die Einstellung der Fahrkurve beinhaltet die Einstellungen der:

- Fahrgeschwindigkeiten
- Beschleunigungs- und Verzögerungszeiten
- Der Verrundungen bzw. Beschleunigungsänderungen oder Ruck, hier S-Kurve genannt

Für die Nenngeschwindigkeit, jede Zwischengeschwindigkeit und die Einfahrgeschwindigkeit können Beschleunigung, Verzögerung und S-Kurve jeweils separat eingestellt werden.

Die Einstellung der S-Kurve erfolgt als prozentualer Anteil der maximalen Geschwindigkeit für die Beschleunigung oder Verzögerung.

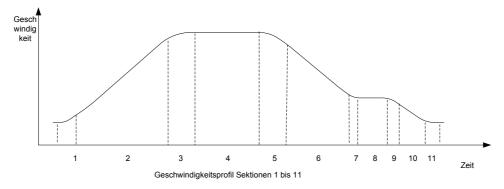


Bild 24: Fahrkurve unter Verwendung der Einfahrgeschwindigkeit

Für jede Geschwindigkeit kann ein eigenes Fahrprofil eingestellt werden. Die folgende Tabelle zeigt die Parameter zum entsprechenden Fahrabschnitt.

Tabelle 11: Zusammenhang Beschleunigungs- und Verzögerungszeiten nach Abbildungen 22 bis 24

Abschnitt	Bedeutung	Nenngeschw.	Zwischen-	Zwischen-	Zwischen-	Zwischen-
Fahrkurve		Maximale Geschw.	geschw. 1	geschw. 2	geschw. 3	geschw. 4
1	Verrundung	L19	L19	L19	L19	L19
2	Beschleu.	E12	E10	F07	F07	E10
3	Verrundung	L24	L22	L20	L20	L22
4	Geschw.	C11	C05	C08	C09	C10
5	Verrundung	L25	L23	L21	L21	L23
6	Verzög.	E13	E11	F08	F08	E11
7	Verrundung	L26	L26	L26	L26	L26
8	Einf. Geschw.	C07	C07	C07	C07	C07
9	Verrundung	L28	L28	L28	L28	L28
10	Verzög.	E14	E14	E14	E14	E14
11	Verrundung	L28	L28	L28	L28	L28

Zwischengeschwindigkeiten sind für Standardaufzüge selten erforderlich. Diese werden benötigt, wenn aufgrund einer hohen Fahrgeschwindigkeit oder bei sehr kurzen Haltestellenabständen der Verzögerungsweg länger als der Haltestellenabstand ist.

Bei Direkteinfahrt ohne Einfahrgeschwindigkeit entfallen die Abschnitte 7,8,9 und 10. Die Einstellung des Anhalterucks erfolgt durch Parameter L28, wie sonst bei der Einfahrgeschwindigkeit.

Andere Kombinationen entnehmen Sie der nachstehenden Tabelle

Tabelle 12: Zusammenhang Beschleunigungs- und Verzögerungszeiten und S - Kurven

Tabelle 12. Zus	Tabelle 12: Zusammennang Beschleunigungs- und Verzogerungszeiten und S - Kurven								
	ACCELERATION & DECELERATION RAMPS (S-CURVES)								
AFTER CHANGE									
	STOP	C04	C05	C06	C07	C08	C09	C10	C11
BEFORE CHANGE									
STOP	-/F08	F07	F07	F07	F07	F07	F07	F07	F07
	(- / -)	(H57 / H58)	(H57 / H58)	(- / -)	(H57 / H58)				
C04	E16	F07 / F08	E10	F07	F07/ F08	F07	F07	E10	E12
	(H59 / H60)	(- / -)	(L19 / L22)	(- / -)	(H57 / H58)	(L19 / L20)	(L19 / L20)	(L19 / L22)	(L19 / L24)
C05	E16	E11	F07 / F08	F07 / F08	E11	F07 / F08	F07 / F08	F07 / F08	F07/ F08
	(H59 / H60)	(L23 / L28)	(- / -)	(- / -)	(L23 / L26)	(H59 / H60)	(H59 / H60)	(H57 / H58)	(H57 / H58)
C06	E16	F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08
	(- / -)	(- / -)	(- / -)	(- / -)	(- / -)	(- / -)	(- / -)	(- / -)	(- / -)
C07	E15	E14	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08
	(L27)	(L28)	(H57 / H58)	(- / -)	(- / -)	(H57 / H58)	(H57 / H58)	(H57 / H58)	(H57 / H58)
C08	E16	F08	F07 / F08	F07 / F08	F08	F07 / F08	F07 / F08	F07 / F08	F07 / F08
	(H59 / H60)	(L21 / L28)	(H57 / H58)	(- / -)	(L21 / L26)	(- / -)	(H57 / H58)	(H57 / H58)	(H57 / H58)
C09	E16	F08	F07 / F08	F07 / F08	F08	F07/ F08	F07 / F08	F07 / F08	F07 / F08
	(H59 / H60)	(L21 / L28)	(H57 / H58)	(- / -)	(L21 / L26)	(H59 / H60)	(- / -)	(H57 / H58)	(H57 / H58)
C10	E16	E11	F07 / F08	F07 / F08	E11	F07 / F08	E11	F07 / F08	F07 / F08
	(H59 / H60)	(L23 / L28)	(H59 / H60)	(- / -)	(L23 / L26)	(H59 / H60)	(L23 / L26)	(- / -)	(H57 / H58)
C11	E16	E13	F07 / F08	F07 / F08	E13	F07 / F08	E13	F07 / F08	F07 / F08
	(H59 / H60)	(L25 / L28)	(H59 / H60)	(- / -)	(L25 / L26)	(H59 / H60)	(L25 / L26)	(H59 / H60)	(- / -)

Das Bestimmen der verwendeten Beschleunigungs- und Verzögerungszeiten sowie der S-Kurven aus obiger Tabelle erfolgt immer von links nach rechts. In der linken Spalte suchen Sie die Geschwindigkeit die sie verwenden. Anschließend laufen Sie in dieser Zeile nach rechts bis Sie zu der Spalte ihrer Zielgeschwindigkeit kommen. Diese Zelle beschreibt die verwendeten Parameter der erste Wert gibt immer die Beschleunigungszeit der zweite Wert die Verzögerungszeit an. Der erste Wert in Klammern gibt den Parameter der einleitenden S-Kurve der zweite Wert die ausleitenden S-Kurve an. Als Beispiel ein Wechsel der Geschwindigkeit von C08 auf C09, wie anhand des grauen Pfeils zu erkennen ist, ist der Rampenparameter im Falle einer Beschleunigung F07 im Falle einer Verzögerung F08, die einleitende S-Kurve H57 die Ausleitende H58.

11.7 Richtwerte für Beschleunigungs- und Verzögerungseinstellungen

Tabelle 13: Richtwerte für Beschleunigungs- und Verzögerungseinstellungen bei verschiedenen Fahrgeschwindigkeiten

Nennge-	Einfahrge-	Einstellzeit	Einstellung	Einstellzeit	Verzöger-
schwindigkeit	schwindigkeit	Besch./ Verzög.	S-Kurve	Besch./ Verzög.	ungsweg
Parameter	Parameter	Parameter	Parameter	Parameter	mm
C11	C07	E13	L24,L25,L26	E14	
0,6 m/s	0,05 m/s	1,6 s	25 %	1,6 s	892
0,8 m/s	0,10 m/s	1,7 s	25 %	1,7 s	1193
1,0 m/s	0,10 m/s	1,8 s	25 %	1,0 s	1508
1,2 m/s	0,10 m/s	2,0 s	25 %	1,0 s	1962
1,6 m/s	0,10 m/s	2,2 s	30 %	1,0 s	2995
2,0 m/s	0,15 m/s	2,4 s	30 %	0,8 s	4109
2,5 m/s	0,20 m/s	2,6 s	30 %	0,7 s	5649

Der Verzögerungsweg und damit der Abstand des Schaltpunktes zur Haltestelle ist von den Parametereinstellungen abhängig. Der Verzögerungsweg in der Tabelle entspricht der Entfernung vom Abschaltpunkt zur Einleitung der Verzögerung bis zur Bündigstellung in der Haltestelle. Die Zeit zur Stabilisierung der Einfahrtsgeschwindigkeit beträgt 1s. Diese Zeit ist Anlagenabhängig zu variieren.

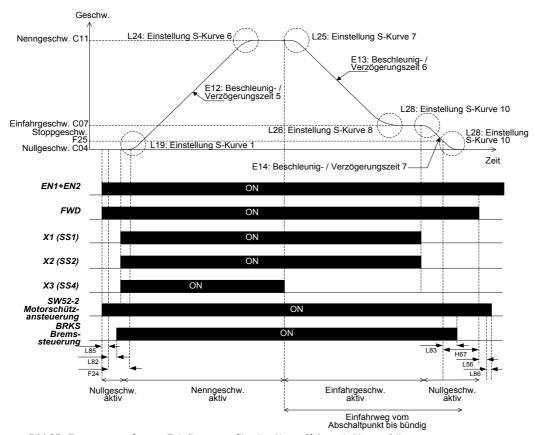


Bild 25: Zusammengefasstes Zeitdiagramm für eine Normalfahrt mit Motorschützansteuerung

Werksseitig sind Geschwindigkeiten in r/min per Parametereinstellung (C21) vorbelegt. Um alle Einstellungen korrekt vornehmen zu können benötigen Sie die Betriebsdrehzahl des Motors. Dies ist die Motordrehzahl bei Nenngeschwindigkeit (schnelle) des Aufzuges.

Ist Ihnen diese nicht bekannt, können Sie die Betriebsdrehzahl nach folgender Formel berechnen:

$$n_{rated} = \frac{19,1 \times v \times r}{D \times i}$$

Dabei ist:

v: Nenn- oder Betriebsgeschwindigkeit des Aufzuges in m/s

r: Kabinenaufhängung (1 für 1:1, 2 für 2:1, 4 für 4:1,...)

D: Durchmesser Treibscheibe in m

I : Getriebeübersetzung

12. Parametertabellen

12.1 Optimierung der Fahreigenschaften

Para-	Werksein-	Erklärung	Einstellwert
meter	stellung		
L36	10	P-Anteil Drehzahlregler bei hoher Geschwindigkeit	Anlagenabhängig
		Zu hohe Werte verursachen Motorvibrationen verbunden mit	
		Motorgeräuschen ab der unter L41 eingestellten Drehzahl. (ASR P)	
L37	0,1s	I-Anteil Drehzahlregler bei hoher Geschwindigkeit	Anlagenabhängig
		Dieser Wert muss fast nie verändert werden. Zu hohe Werte	
		verursachen ein Wegsacken beim Anfahren und am Ende der	
		Beschleunigung und Verzögerung ab der unter L41 eingestellten	
		Drehzahl. (ASR I)	
L38	10	P-Anteil Drehzahlregler bei kleiner Geschwindigkeit.	Anlagenabhängig
		Effekte wie bei L36, jedoch bis zu der unter L40 eingestellten	
		Drehzahl. (ASR P)	
L39	0,1s	I-Anteil Drehzahlregler bei kleiner Geschwindigkeit. Effekte wie bei	Anlagenabhängig
		L37, jedoch bis zu der unter L40 eingestellten Drehzahl. (ASR I)	
L40	150 r/min	Ausschaltschwelle des P und I Reglers für kleine Geschwindigkeit.	Anlagenabhängig
		Bis hier wirken die unter Parameter L38 und L39 eingestellten	
		Werte.	
L41	300 r/min	Einschaltschwelle des P und I Reglers für hohe Geschwindigkeit.	Anlagenabhängig
		Ab hier wirken die unter Parameter L36 und L37 eingestellten	
		Werte.	
L56	0,2s	Zeit zum Abbau des Stromes im Motor nach Einfallen der Bremse.	Anlagenabhängig
		Diese Zeit muss erhöht werden, sollte die Entmagnetisierung eines	
		Synchronmotors Geräusche verursachen.	
L82	0,2s	Zeit nach Eingang Richtungssignal (FWD oder REV) bis	Anlagenabhängig
		Ausgangssignal Freigabe Bremse. Die Zeit sollte lang genug sein,	
		um den nötigen Strom im Motor aufzubauen.	
L83	0,1s	Zeit nach Stopp (Drehzahl 0) bis Deaktivierung des	Anlagenabhängig
		Ausgangssignals "Freigabe Bremse". Hier ist wichtig, dass die von	
		der Steuerung gesteuerten Motorschütze und der Eingang	
		"Reglerfreigabe" erst nach vollständigem Einfall der	
		Treibwerksbremse ausgeschaltet werden	
L85	0,1s	Verzögerungszeit, zum Schließen der Fahrschütze durch den	Anlagenabhängig
		Umrichter, bis zur Ausgabe einer Frequenz	
L86	0,1s	Verzögerungszeit zum Öffnen der Fahrschütze nach Beendigung	Anlagenabhängig
		der Fahrt	

Bei den meisten Anwendungen sind die Werkseinstellungen für ein angenehmes Fahrund Geräuschverhalten ausreichend.

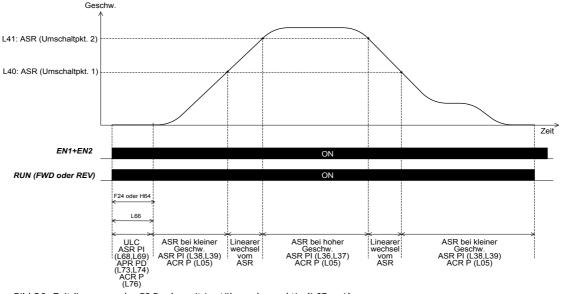


Bild 26: Zeitdiagramm der PI Regler mit Lastübernahme aktiv (L65 = 1)

Parametertabellen

12.2 Optimierung Anfahren und Anhalten

Para-	Werksein-	Erklärung	Einstellwert
meter	stellung	_	
F20	0.00r/min	Gleichstrombremse: Start Frequenz (nur bei Betrieb ohne Drehzahlgeber F42 = 2)	Anlagenabhängig
F21	0%	Gleichstrombremse: Pegel	Anlagenabhängig
F22	0.00s	Gleichstrombremse: Eingriffsdauer	Anlagenabhängig
F23	0,0 r/min	Startgeschwindigkeit (Einstellung nur bei Betrieb ohne Drehzahlgeber erforderlich F42 = 2)	Anlagenabhängig
F24	1 s	Haltezeit bis zum Anfahren nach Aktivierung der Eingangssignale. Ein zu kleiner Wert bewirkt eventuell einen stärkeren Anfahrruck.	Anlagenabhängig
F25	3,0 r/min oder 0,2 r/min	Stopp Geschwindigkeit. Diese Einstellung bestimmt den Startpunkt für die Verzögerungszeit zum Einfallen der Bremse und die Haltezeit der Stopgeschwindigkeit	Anlagenabhängig
H64	0.0s	Closed loop: Haltezeit Nullgeschwindigkeit Open loop: Zeit mit DC Bremse am Start	
H65	0.0s	Rampenzeit für Sanftanlauf bei Installationen mit hoher Haftreibung	
H67	0,5s	Haltezeit Nullgeschwindigkeit nach Stop (Nach Ablauf dieser Zeit wird der Motor nicht mehr bestromt)	
L65	0	Lastübernahmeregelung: Freigabe	Anlagenabhängig
L66	0.5s	Lastübernahmeregelung: Aktivierungszeit	Anlagenabhängig
L68	10.00	Lastübernahmeregelung: Verstärkung Geschwindigkeitsregler (ASR P)	
L69	0.01s	Lastübernahmeregelung: Integrationszeit (ASR I)	Anlagenabhängig
L73	0.00	Lastübernahmeregelung: P-Verstärkung Positionsregler (APR P)	Anlagenabhängig
L74	0.00	Lastübernahmeregelung: D-Verstärkung Positionsregler (APR D)	Anlagenabhängig
L76	0.00	ACR P-Verstärkung für Lastübernahmeregelung. Bei Einstellwert 0.00 ist die Verstärkung in L05 aktiv.	Anlagenabhängig

12.3 Sonstige Parameter, Einstellungen bei Bedarf

Para- meter	Werksein- stellung	Erklärung	Einstellwert
C21	0 r/min	Auswahl der Einheit für die Geschwindigkeitsauswahl 0: r/min 1: m/min 2: Hz	r/min
E31	1500 r/min 60 r/min	Klemme Y3 wird aktiv, wenn der hier eingestellte Geschwindigkeitsgrenzwert erreicht ist	Wenn für Anlage vorgesehen
E32	15 0,6	Hysterese für den unter E31 eingestellten Geschwindigkeitsgrenzwert.	Wenn für Anlage vorgesehen
F42	0 1 2	1 Betrieb an Synchronmotoren	
H04	0	Dieser Parameter legt die Anzahl an automatischen Rücksetzversuchen	
H05	5 s	Zeit nach der ein Auto – Reset durchgeführt werden soll	Zeit zwischen 0,5s – 20 s
H98	81	Schutz und Wartungsfunktionen (Bitparameter siehe Tabelle 5)	Anlagenabhängig
L07	0	Rotorlagenabgleich beim ersten Betriebsbefehl (nach Einschalten)	1,3 oder 4
L80	1	Bremssteuerung über Zeit (Standardeinstellung) Bremssteuerung über Motorstrom	1
L29	0,00	Haltezeit bei Spitzbogenfahrt.	Anlagenabhängig
L30	0,00	Geschwindigkeitsgrenzwert bis zu dem eine Spitzbogen-fahrt ausgeführt werden soll	Nenngeschw. -10%
L86	Wenn die Motorschütze vom Umrichter gesteuert werden sollen, ist die hier eingestellte Zeit die Abfallverzögerung der Motorschütze nach Einfall der Bremse		0,1 s
L87	450 r/min 18r/min	Geschwindigkeit bei der das vorzeitige Türöffnen beim Einfahren freigegeben wird	Wenn f. Anlage vorgesehen
L99		Bitparameter siehe Tabelle 18	

Parametertabellen

12.4 Funktonseinstellungen der Ein- und Ausgangsklemmen, zum Verständnis und bei Bedarf für Sonderanwendungen

	tur Sonder	anwendungen	
Para-	Werksein-	Erklärung	Einstellwert
meter	stellung		
		Funktionalität der Klemmen X1-X8:	
E01	0	0: Bit 0 der binären Geschwindigkeitscodierung (SS1)	0
E02	1	1: Bit 1 der binären Geschwindigkeitscodierung (SS2)	1
E03	2	2: Bit 2 der binären Geschwindigkeitscodierung (SS4)	2
E04	8	8: Externer Alarm Quittierung(RST)	8
E05	60	9: Externe Störkette (THR)	
E06	61	10: Aktiviere Jog (JOG)	
E07	62	63: Aktiviere Evakuierungsbetrieb (BATRY)	
E08	63	64: Start der Direkteinfahrt (CRPLS)	63
		65: Bremsüberwachung (BRKE)	
		69: Start der Pollageneinmessung (PPT)	
		103: Schütz Überwachung (CS-MC)	
E20	12	Funktionalität der Transistorausgänge (Y1 – Y4) sowie der	12
E21	78	Relais Ausgänge (30ABC und Y5AC):	78
E22	2	0: Umrichter in Betrieb (RUN)	2
E23	57	2: Frequenzpegel erreicht (FDT)	57
E24	57	12: Schützansteuerung (SW52-2)	57
E27	99	57: Bremsansteuerung (BRKS)	99
		78: Signal zum Einfahren mit geöffneter Tür (DOPEN)	
		99: Sammelstörmeldung (ALM)	
		107: Pollageneinmessung aktiv (DTUNE)	
		109: Bevorzugte (generatorische) Drehrichtung für Evakuierung (RRD)	

12.5 Zuordnung der Bitweisen Parameter H98 und L99

Parameter	Bit	Erklärung	Einstellwert		
H98	0	Automatisches Anpassen der Schaltfrequenz			
	1	1 Erkennung eines Verlustes einer Eingangsphase			
	2	Aktivierung OPL Funktion	1 = ON		
	3 Auswahl der Methode zur Bestimmung der				
		Zwischenkreiskapazität	1 = Benutzer		
	4	Überprüfung der Zwischenkreiskapazität			
	5	Reserviert			
	6 Kurzschlusserkennung in den Ausgangsphasen				
	7	Reserviert 0 = OF			
L99 0		Strompegeleinstellung für Synchronmotoren	1 = ON		
	1	Übernahme von neuem Rotorlagenwinkel (Offset)			
	2 Drehmoment Vorsteuerung				
	3 Auswahl Variante Spitzbogenfahrt		0 = klassisch		
			1 = äquidistant		
	4	Richtungsbelegung DCP3: Upwards (Aufwärts) entspricht:	0 = FWD		
			1 = REV		
	5 Reserviert				
	6	DOPEN nicht abhängig von EN1 & EN2 oder BX (BBX) Signal	0 = OFF 1 = ON		
	7	Reserviert	1 – 011		

13. Fahrten zwischen zwei Haltestellen

Variante 1: Klassische Spitzbogenfahrt

Wenn der Schaltpunkt zur Einleitung der Verzögerung länger als der halbe Haltestellenabstand ist, leitet der FRENIC- Lift eine so genannte Spitzbogenfahrt ein. Dies ist z.B. dann der Fall, wenn in Fahrtrichtung gesehen der Abschaltpunkt innerhalb der ersten Hälfte des Etagenabstandes liegt.

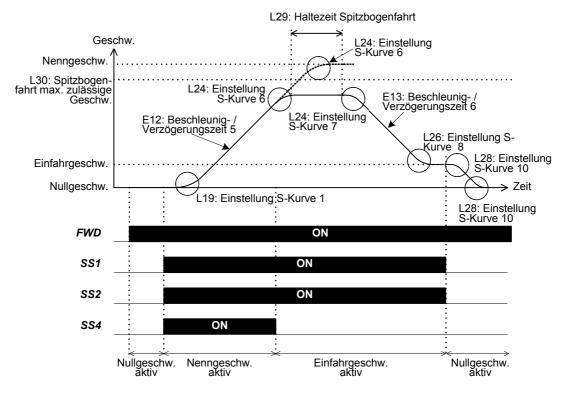


Bild 27: Klassische Spitzbogenfahrt

Um diese Variante im Umrichter zu aktivieren müssen Sie Bit 3 des Parameters L99 mit 0 parametrieren.

13 Fahrten zwischen zwei Haltestellen

Variante 2: Beibehaltung des Verzögerungsweges

Bei dieser Variante der Spitzbogenfahrt behält der Umrichter die Wegstrecke von der Wegnahme der Nenngeschwindigkeit bis zum Erreichen der Einfahrtgeschwindigkeit bei. Hierfür werden die S – Kurven innerhalb des Umrichters selbständig berechnet und angepasst.

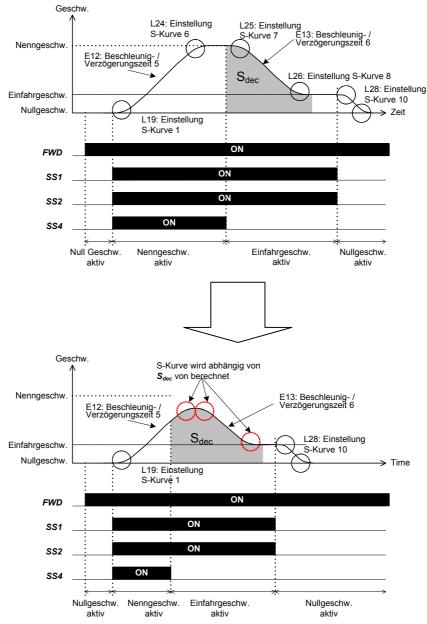


Bild 28: Spitzbogenfahrt unter Beibehaltung des Einfahrtsweges

Um diese Variante der Spitzbogenfahrt zu aktivieren setzen Sie Bit 3 des Parameters L99 bitte zu 1. Die Parameter L29 und L30 haben in dieser Variante keinen Einfluss auf die Spitzbogenfahrt.

13 Fahrten zwischen zwei Haltestellen

13.1 Direkteinfahrt

Zur Aktivierung der Direkteinfahrt müssen L31 (Linearisierungsfaktor für Linear- zu Rotationsgeschwindigkeit) und L34 (Restweg für Direkteinfahrt) berechnet und eingestellt werden. Die Direkteinfahrt wird aktiviert wenn nach der Wegnahme der Nenngeschwindigkeit die Verzögerung auf Einfahrtgeschwindigkeit eingeleitet wird, diese aber durch die Wegnahme aller Geschwindigkeitssignale vor erreichen der Geschwindigkeit abgebrochen wird. Im Normalfall erkennt die Steuerung den Startpunkt für die Direkteinfahrt, nimmt die Geschwindigkeitssignale weg, anschließend beginnt der Umrichter mit der Direkteinfahrt. Zur Verbesserung der Landung kann es nötig sein die Parameter L36 bis L42 anzupassen.

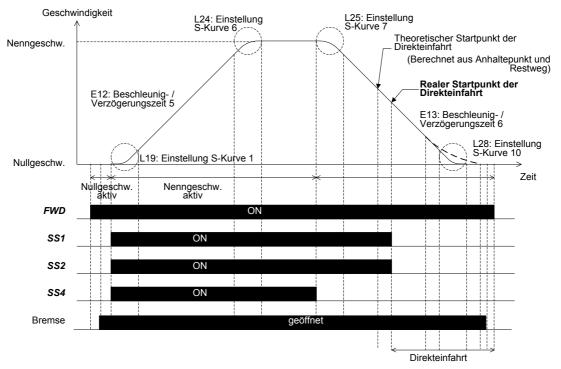


Bild 29: Direkteinfahrt

14. Lösen aus dem Fang

Einstellungen für einen erhöhten Anfahrruck

Um den Aufzug mittels Umrichter aus dem Fang zu ziehen, verwenden Sie stets die Inspektionsgeschwindigkeit (C06). Dies ist damit begründet, dass hier keine S – Kurven bei Beschleunigung und Verzögerung Verwendung finden.

Sollte der Anfahrtruck nicht ausreichen um die Kabine aus dem Fang zu ziehen, stellen Sie die Beschleunigungszeit möglichst kurz ein F07 \sim 0.5s.

15. Evakuierungsbetrieb

Zur Aktivierung der Evakuierungsbetriebes muss mit dem Schalten der UPS (Batterie) das Signal BATRY (X8) geschaltet werden. Anschließend ist analog zum Normal Betrieb EN1 und EN2 und das Richtungssignal sowie die in Parameter (L12) hinterlegte Bitkombination zu geben, um die Fahrt mit Batteriegeschwindigkeit (C03) zu starten.

Um eine Überlastabschaltung im Batteriebetrieb zu vermeiden, kann die Drehmomentbegrenzung für diesen Fall gesondert eingestellt werden.

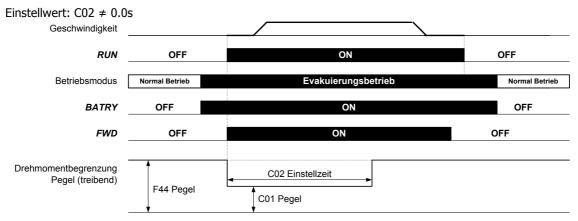


Bild 30: Evakuierungsbetrieb unter Verwendung der Drehmomentbegrenzung

Es ist möglich an den digitalen Ausgängen [Y1] bis [Y4], [Y5A/C] und [30A/B/C] des Umrichters das Signal *RRD (Recommended Running Direction)* auszugeben. Dieses Signal gibt die vorgeschlagene Richtung im Evakuierungsbetrieb an.

	ir E20 bis E24 · E27	Zugowiecene Funktion	Symbol	
Positive Logik	Inverse Logik	Zugewiesene Funktion	Symbol	
109	1109	Recommended running direction / vorgeschlagene Fahrtrichtung	RRD	

RRD gibt die Richtung des generatorischen Betriebes an. Das Signal wird auch bei Stromausfall gespeichert und bis zur nächsten Fahrt im Umrichter gespeichert.

R	RD	
109 (positive Logik)	1109 (inverse Logik)	Spezifikation
AUS	AUS	Der Umrichter schlägt Rückwärts (<i>REV</i>) vor.
EIN	EIN	Der Umrichter schlägt Vorwärts (<i>FWD</i>) vor.

Der Parameter E39 ist der *RRD* Erkennungspegel. Bitte nutzen Sie diesen Parameter nur für Getriebemotoren. Einstellbereich: 0 bis 100%

Einstellprozedur:

- 1. Stellen Sie Lastausgleich für die Kabine her (Kabine + Last = Gegengewicht)
- 2. Notieren Sie die Werte für das anliegende Drehmoment bei Aufwärts- und Abwärtsfahrt
- 3. Vergleichen Sie die Werte und tragen sie den größeren in Parameter E39 ein

Beim Betrieb von Asynchronmotoren ohne Encoder und Evakuierung mit Batterien bitte Bremsansteuerung mittels Ausgangsstrom (L80=2) verwenden.

Andernfalls könnte die Bremse auch bei entladenen Batterien geöffnet werden.

16. Sanftanlauf für Installationen mit hoher Haftreibung

Der Umrichter hält die Nullgeschwindigkeit während der Nullgeschwindigkeit – Haltezeit (H64) nach dem Schließen der Motorschütze. Der Einstellbereich ist 0.00 (inaktiv), 0.01 bis 10.00s. Diese Funktion kann verwendet werden, um ein sanfteres Anfahren bei Installationen mit hoher Haftreibung zu gewährleisten.

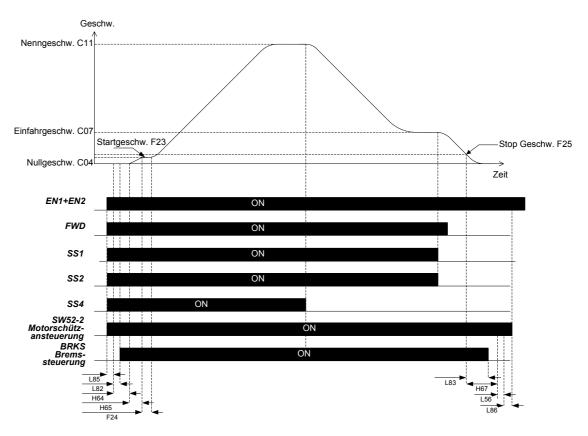


Bild 31: Signalfolge unter Verwendung der Softstartfunktion

Verzögerungszeit zum Anziehen der Motorschütze (L85) Verzögerungszeit zum Öffnen der Triebwerksbremse (L82) Haltezeit (H64) der Nullgeschwindigkeit (C04) Zeit für den Sanftanlauf (H65) auf Startgeschwindigkeit (F23) Haltezeit (F24) für Startgeschwindigkeit (F23)

Verzögerungszeit (L83) zum Schließen der Triebwerksbremse Haltezeit (H67) des Betriebsbefehles nach Unterschreiten der Stoppgeschwindigkeit L56 Zeit zum Entmagnetisieren des Motors Verzögerungszeit (L86) zum Abfallen der Motorschütze

17. Fehlermeldungen

Fehler Code Displayanzeige	Beschreibung	Mögliche Ursachen
OC	Motor überlastet: OC1= Überlast während Beschleunigung OC2= Überlast während Verzögerung OC3= Überlast während Konstantfahrt	a) Prüfen ob der verwendete Motor für die Anwendung (Aufzug) passend ausgelegt wurde b) Prüfen ob der eingesetzte Umrichter für die Anlage passend ausgelegt wurde c) Prüfen ob Bremsen geöffnet sind d) Führen Sie ein Auto-bzw. Poltuning durch. Tuning abgeschlossen?
OU	Überspannung Im Zwischenkreis: OU1= Überspannung während Beschleunigung OU2= Überspannung während Verzögerung OU3= Überspannung während Konstantfahrt	a) Bremswiderstand nicht angeschlossen oder defekt b) Gegengewicht nicht ausgeglichen c) Verzögerungszeit zu kurz d) Prüfe Anschlüsse e) Prüfe Netzanschluss
LU	Unterspannung im Zwischenkreis	 a) Netzspannung zu gering b) Netzspannungsausfall c) Beschleunigung zu hoch d) Last zu hoch e) Prüfe Anschlüsse der Eingangssignale
Lin	Phasenausfall Netzspannung	a) Prüfe Netzsicherungen b) Prüfe Eingangsklemmen
OPL	Ausgansphasenverlust	a) Fehlanschluss Umrichterseite b) Fehlanschluss Motorseite c) Fehlanschluss Leistungsschütze
OH I	Kühlkörpertemperatur zu hoch	a) Umrichterlüfter defekt b) Umgebungstemperatur zu hoch
0H2	Externe Alarmmeldung: nicht konfiguriert für Aufzüge	Digital Eingang (X1-X8) mit dem Wert 9 (THR) ist programmiert aber inaktiv
0H3	Umgebungstemperatur im Umrichter zu hoch	Überprüfen Sie Einbau und Temperatur im Schaltschrank
OHY	Motorübertemperatur: Kaltleiter (PTC) angesprochen. Nicht verwendet für Aufzüge	a) Motorlüfter ist zu schwach b) Umgebungstemperatur ist zu hoch c) Prüfe Parameter H26,H27 (PTC Thermistor)
PG	Fehler Drehzahlgeber	a) Prüfe Geberkabel b) Motor blockiert c) Triebwerksbremse öffnet nicht
ErE	Geschwindigkeitsabweichung	a) Prüfe Parameter L90 ~L92 b) Prüfe Bremse c) Motor, Kabine oder Gegengewicht blockiert b) Strombegrenzer aktiv
OL I	Motor überlastet	a) Prüfe Bremse b) Motor, Kabine oder Gegengewicht blockiert c) Umrichter an Stromgrenze bzw. zu klein d) Prüfe die Parameter F10~ F12
OLU	Umrichter überlastet	a) Übertemperatur im IGBT b) Kühlung ausgefallen c) Taktfrequenz Par. F26 zu hoch d) Last im Fahrkorb zu hoch e) Umrichter an Stromgrenze bzw. zu klein f) Motor, Kabine oder Gegengewicht blockiert
Er l	Speicherfehler	Datenverlust
ĒrŠ	Kommunikationsfehler Bedieneinheit	Bedieneinheit während Fahrt entfernt.
E-3	CPU-Fehler	CPU Umrichter defekt

Fehlermeldungen

ЕсЧ	Kommunikationsfehler mit Optionskarte	Kommunikationsfehler zw. Optionskarte und Umrichter a) Optionskarte falsch angeschlossen b) Prüfe Kabel und Abschirmungsanschlüsse
ErS	Fehler in Optionskarte	Kommunikationsfehler zw. Optionskarte und Umrichter a) Encoder nicht richtig angeschlossen b) Prüfe Kabel und Abschirmungsanschlusse
Er6	Geschwindigkeitseingänge oder Signal Bremsüberwachung falsch gesetzt	 a) Prüfe Parameter L11-L18: Binärkombinationen doppelt?) b) Prüfe Bremssignale BRKS c) Prüfe MC-Signal d) Prüfe Parameter L84 e) Prüfe Parameter L80,L82,L83 f) Wenn F42=1 und L04=0,00. Poltuning fehlerhaft g) EN81-1+A3 Funktion ist nicht korrekt konfiguriert (nicht komplett)
Er7	Fehler während Auto Tuning	a) Verbindung zwischen Umrichter und Motor wurde während Autotuning unterbrochen (Motorschütz) b) Reglerfreigabe (EN) unterbrochen c) Prüfe Kabel Drehzahlgeber d) Prüfe Drehzahlgeber
E-8	RS 485 Kommunikationsfehler	a) Kabelunterbrechung b) Störeinstrahlungen auf Kabel
ErE	Geschwindigkeitsabweichung (Zusätzliche Vorschläge : Motorparameter P01-P12 überprüfen, Encoderparameter L01-L2 überprüfen, Encoder Spuren A und B oder Motorphasen tauschen, Abschirmung von Motor & Encoder überprüfen)	a) Prüfe Bremsen b) Motor, Kabine oder Gegengewicht blockiert c) Prüfe Parameter L90 ~L92 d) Strombegrenzer aktiv (F43/F44)? e) Führen Sie ein Auto-bzw. Poltuning durch. Tuning abgeschlossen?
ErH	Optionskartenfehler	a) Optionskarte nicht korrekt installiert b) Optionskarte nicht kompatibel mit Umrichter
Ert	CAN Bus Kommunikationsfehler	a) CAN Bus Verbindung überprüfen b) Abschlusswiderstand? c) EMV Probleme, Abschirmung?
ECF	EN1 und EN2 Schaltungsfehler	Fehler in der EN Schaltung, Überprüfe EN1+EN2, sonst setzen Sie sich mit Fuji Electric in Verbindung
05	Motordrehzahl größer als $\frac{L32xF03}{100}$	a) Prüfe Einstellung Geberimpulse unter Parameter L02 b) Prüfe Wert unter F03 c) Prüfe Wert unter P01 d) Prüfe Wert unter L32
PbF	Ladekreisfehler	Bei Umrichtern ab 37kW oder mehr. Prüfe Netzversorgung in R0/T0 Anschluss (400V). Kontaktieren Sie bitte Fuji Electric.
ЬЬ	Bremsüberwachung gemäß EN81-1+A3	Bremsenstatus fehlerhaft. Kontaktieren Sie bitte Fuji Electric.

KONTAKT INFORMATIONEN

Hauptsitz Europa

Fuji Electric Europe GmbH

Goethering 58 63067 Offenbach/Main

Deutschland

Tel.: +49 69 (0)66 90 29 0 Fax: +49 69 (0)66 90 29 58

info.inverter@fujielectric-europe.com

www.fujielectric-europe.com

Schweiz

Fuji Electric Europe GmbH

Swiss Branch Park Altenrhein

9423 Altenrhein Tel.: +41 71 85829 49

Fax.: +41 71 85829 40

info.swiss@fujielectric-europe.com www.fujielectric-europe.com

Frankreich

Fuji Electric Europe GmbH **Succursale France**

265 Rue Denis Papin 38090 Villefontaine

Tel.: +33 4 74 90 91 24 Fax: +33 4 74 90 91 75

info.france@fujielectric-europe.com www.fujielectric-europe.com

Großbritannien

Fuji Electric Europe GmbH **UK Branch**

Te.: +44 7 989 090 783 info.uk@fujielectric-europe.com www.fujielectric-europe.com

Hauptsitz Japan

Fuji Electric Co., Ltd. Gate City Ohsaki East Tower, 11-2 Osaki 1-chome, Shinagawa-ku, Chuo-ku, Tokyo 141-0032

Japan

Tel: +81 3 5435 7280 Fax: +81 3 5435 7425 www.fujielectric.com

Spanien

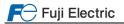
Fuji Electric Europe GmbH Sucursal en España

Ronda Can Fatjó 5, Edifici D, Local B Parc Tecnològic del Vallès

08290 Cerdanyola (Barcelona) Tel.: +34 93 5824333/5

Fax: +34 93 5824344

info.spain@fujielectric-europe.com www.fujielectric-europe.com


Italien

Fuji Electric Europe GmbH

Filiale Italia Via Rizzotto 46 41126 Modena (MO) Tel. +39 059 47 34266 Fax +39 059 47 34294

info.italy@fujielectric-europe.com www.fujielectric-europe.com

Technische Änderungen vorbehalten

